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Technical Appendix B to Accompany
"Increased (Platform) Competition Reduces (Seller) Competition"

by Shana Cui

This Technical Appendix expands the analysis from the paper to include multi-homing of
sellers, seller entry and competition, and endogenous platform strength. I begin by revisiting
the key equations, Lemmas, and Propositions detailed in the paper.

Equations, Lemmas, and Propositions from the Text

qPkj = θj αj−βPj pPkj+ηj pSkj.
(1)

qSkj = αj−βSj pSkj+ηj pPkj.
(2)

qSkj = Aj−bSj pSkj.
(3)

φkj ≡
[(

8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃ij

∆kj

]2

.

(4)
f (r, n) ≡ 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]−γ2 [n− 1 ] .

(5)
g (r, n) ≡ γ2 [n− 1 ]+4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] .

(6)

Hkj ≡
1

2

{
∆kj

2
+

∆kjγ [n− 1 ]
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)
}

2g (r, n)

}

·
{

∆kjγ [n− 1]
{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

g (r, n)
+ ∆kj

}

+

{
∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

2g (r, n)
+
γ∆kj

2

}

· [n− 1 ]
∆kj [ 1 + γ (n− 2 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
g (r, n)

. (7)

ςkj ≡
1

βSj β
P
j [ 1− Ωj ]

{
ηj [ 2 + Ωj ] ∆kj

8 + Ωj

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]

+
βSj
2

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]2

+
βPj
2

[
( 2 + Ωj ) ∆kj

8 + Ωj

]2

 . (8)
1



∆̃kj = ∆kj +
ηj

βPj
∆kj = αj − βSj cSj + ηj c

P
kj +

ηj

βPj

[
θj αj − βPj cPkj + ηj c

S
j

]
. (9)

∂∆̃kj

∂cPkj
= ηj −

ηj

βPj
βPj = 0. (10)

bSj = βSj

[
1−

(
ηj
)2

βSj β
P
j

]
= βSj [ 1− Ωj ] . (11)

∆̃kj = ∆kj +
ηj

βPj
∆kj. (12)

(10) and (12) imply that:

∆̃1j = ∆̃2j > ∆2j and ∆̃2j = ∆̃1j > ∆1j. (13)

Lemma 1. Suppose Sj faces no competition from Pk when Sj sells on Pk (j, k ∈ {1, 2}).
Given wkj, Sj’s equilibrium output (i.e., sales) (QS

kj) is
Θk[ ∆̃kj−bSj wkj ]

2
, and Sj’s total profit

is Θk
bSj

[
qSkj
]2
where qSkj =

QSkj
Θk
.

Lemma 2. Suppose Sj faces no competition from Pk when Sj sells on Pk (j, k ∈ {1, 2}).
Then Pk’s profit-maximizing commission for Sj is wkj =

∆̃kj

2 bSj
.

Lemma 3. Suppose Sj faces no competition from Pk when Sj sells on Pk (j, k ∈ {1, 2}).
Then Sj’s equilibrium output (QS

kj) is
Θk ∆̃kj

4
, Sj’s profit is

Θk[ ∆̃kj ]
2

16 bSj
, and Pk’s profit from the

commission it collects from Sj is
Θk[ ∆̃kj ]

2

8 bSj
.

Lemma 4. Suppose Sj competes against Pk when Sj sells on Pk (j, k ∈ {1, 2}). Given

wkj, Sj’s equilibrium output (QS
kj) is

Θk

[
ηj

βP
j

∆kj+2 ∆kj−2βSj ( 1−Ωj )wkj

]
4−Ωj

, Pk’s equilibrium output

(QP
kj) is

Θk

[
2 ∆kj+

ηj

βS
j

∆kj −ηj( 1−Ωj )wkj

]
4−Ωj

, and Sj’s total profit is Θk
βSj

[
qSkj
]2
where qSkj =

QSkj
Θk
.

Lemma 5. Suppose Sj competes against Pk when Sj sells on Pk (j, k ∈ {1, 2}). Then Pk’s
profit-maximizing commission for Sj is

1
2[ 1−Ωj ]

[
Ωj ∆kj

ηj
+

[ 8+(Ωj)
2 ] ∆kj

βSj ( 8+Ωj )

]
.

Lemma 6. Suppose Sj competes against Pk when Sj sells on Pk (j, k ∈ {1, 2}). Then Sj’s
equilibrium output is Θk[ 2+Ωj ] ∆kj

8+Ωj
, Sj’s profit is Θk

βSj

[
( 2+Ωj ) ∆kj

8+Ωj

]2

, Pk’s equilibrium output

is Θk ∆kj

2
+

ηjΘk[ 2+Ωj ] ∆kj

2βSj [ 8+Ωj ]
, and Pk’s profit from the commission it collects from Sj and from

entering Sj’s market is ΘkMkj − F . Pk sells more than Sj if Pk is a stronger seller than
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Sj (i.e., QP
kj > QS

kj if
∆kj

∆kj
> 1).

Proposition 1. Suppose platform entry is feasible (Condition FS holds). In the monop-
olistic platform setting, both sellers sell on P and P enters both sellers’ product markets

in equilibrium. Sj’s equilibrium profit is Θ
βSj

[
( 2+Ωj ) ∆Pj

8+Ωj

]2

, and P’s equilibrium profit is

ΘMP1 + ΘMP2 − 2F .

Lemma 7. Suppose Condition FS holds and Θ1

Θ2
≥ 1. Further suppose both platforms

commit not to enter. Then Sj (j ∈ {1, 2}) is indifferent between selling on P1 and selling
on P2 if Θ1

Θ2
= 1, whereas Sj sells on P1 if Θ1

Θ2
> 1.

Lemma 8. Suppose Condition FS holds and Θ1

Θ2
≥ 1. Further suppose platforms both make

no commitment. If
cP2j
cP1j

< 1, then Sj will sell on P1. If
cP2j
cP1j

> 1, then Sj will: (i) sell on P1

when Θ1

Θ2
>
[

∆2j

∆1j

]2

; and (ii) sell on P2 when Θ1

Θ2
<
[

∆2j

∆1j

]2

.

Lemma 9. Suppose Condition FS holds and Θ1

Θ2
≥ 1. Further suppose P1 commits not to

enter and P2 makes no commitment. Then Sj (j ∈ {1, 2}) will sell on P1.

Lemma 10. Suppose Condition FS holds and Θ1

Θ2
≥ 1. Further suppose P1 makes no

commitment and P2 commits to no entry. Then Sj (j ∈ {1, 2}) will: (i) sell on P1 if
Θ1

Θ2
> φj; and (ii) sell on P2 if

Θ1

Θ2
< φj.

Proposition 2. Suppose platform entry is feasible (Condition FS holds), a third-party seller
benefits more from no competition than from reduced competition (Assumption BC holds),
and Θ1

Θ2
≥ 1. Then in equilibrium: (i) if Θ1

Θ2
> φ2, P1 makes no commitment, and both S1

and S2 sell on P1; (ii) if Θ1

Θ2
∈ (φ1, φ2 ), P1 makes no commitment whereas P2 commits not

to enter, and S1 sells on P1 whereas S2 sells on P2; (iii) if Θ1

Θ2
∈ ( 1, φ1 ), P1 commits not

to enter, and both S1 and S2 sell on P1; and (iv) if Θ1

Θ2
= 1, both platforms commit not to

enter, and each seller is indifferent between selling on P1 and selling on P2.

Condition FS ΘkMk2 −
Θk[ ∆̃k1 ]

2

8 bS1
− Θk[ ∆̃k2 ]

2

8 bS2
< F < min{ΘkMk2 −

Θk[ ∆̃k2 ]
2

8 bS2
, ΘkMk1 −

Θk[ ∆̃k1 ]
2

8 bS1
− Θk[ ∆̃k2 ]

2

8 bS2
}.

Assumption BC if cP1j < cP2j, then φ1 >
[

∆22

∆12

]2

for j ∈ {1, 2}.
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1 Multi-homing

In this section, sellers have the option to choose between single-homing, where they sell
exclusively on one platform, and multi-homing, where they sell on both platforms.

I now consider a game in which platforms P1 and P2 initially decide whether to commit
to not acting as sellers or to make no such commitment. Following these commitments,
sellers choose to either sell exclusively on one platform (single-homing) or on both platforms
(multi-homing). For those opting for single-homing, the decision of which platform to choose
is also made. Platforms that have not made any commitments then decide whether to enter
the market and, if so, which market to enter. Subsequently, P1 and P2 set their per-
unit commissions. Finally, each active seller determines the profit-maximizing price for its
products.

In this section, platforms launch exclusive programs that incentivize sellers to engage in
single-homing by offering increased visibility for those who sell exclusively on one platform.
Seller Sj (j ∈ {1, 2}) receives an exogenous boost σBk from platform Pk (k ∈ {1, 2}), where
σ = 1 if Sj sells on both platforms (multi-homing) and σ > 1 if Sj sells exclusively on
Pk (single-homing). Therefore, σ measures the platform’s rewards for single-homing sellers.

Lemma 3 implies that Sj’s profit from selling on Pk is
σΘk[ ∆̃kj ]

2

16 bSj
, where σ = 1 if Sj sells on

both platforms and σ > 1 if Sj sells exclusively on Pk.

Assumption 1. Θ1 > Θ2, cS1 < cS2 , c
P
k1 = cPk2, and c

P
1j > cP2j for k, j ∈ {1, 2}.

Assumption 1 pertains to the setting where P1 is a stronger platform (i.e., Θ1 > Θ2) but
a weaker seller (i.e., cP1j > cP2j) than P2, S1 is a stronger seller than S2 (i.e., c

S
1 < cS2 , and

therefore ∆k1 > ∆k2 for k ∈ {1, 2}), and the imitation cost of each seller is the same for Pk
(i.e., cPk1 = cPk2).

Lemma 11. Suppose Sj faces no competition from Pk when Sj sells on Pk (j, k ∈ {1, 2}).
Then Sj’s profit from selling on Pk is

σΘk[ ∆̃kj ]
2

16 bSj
, and Pk’s profit from the commission it

collects from Sj is
σΘk[ ∆̃kj ]

2

8 bSj
, where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells

exclusively on Pk.

Proof. Since Sj receives an exogenous boost σBk from platform Pk, where σ = 1 if Sj
sells on both platforms and σ > 1 if Sj sells exclusively on Pk, Lemma 3 implies that in the

absence of competition in the seller market, Sj’s profit from selling on Pk is
σΘk[ ∆̃kj ]

2

16 bSj
, and

Pk’s profit from the commission it collects from Sj is
σΘk[ ∆̃kj ]

2

8 bSj
, where σ = 1 if Sj sells on

both platforms and σ > 1 if Sj sells exclusively on Pk. �

Lemma 12. Suppose Sj competes against Pk when Sj sells on Pk (j, k ∈ {1, 2}). Then
Sj’s profit from selling on Pk is σΘk

βSj

[
( 2+Ωj ) ∆kj

8+Ωj

]2

, and Pk’s profit from the commission it

collects from Sj is σΘkMkj − F , where σ = 1 if Sj sells on both platforms and σ > 1 if Sj
sells exclusively on Pk.
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Proof. Since Sj receives an exogenous boost σBk from platform Pk, where σ = 1 if Sj sells on
both platforms and σ > 1 if Sj sells exclusively on Pk, Lemma 6 implies that in the presence

of competition in the seller market, Sj’s profit from selling on Pk is σΘk
βSj

[
( 2+Ωj ) ∆kj

8+Ωj

]2

, and

Pk’s profit from the commission it collects from Sj is σΘkMkj − F , where σ = 1 if Sj sells
on both platforms and σ > 1 if Sj sells exclusively on Pk. �

Lemma 13. Suppose Condition FS and Assumption 1 hold, and both platforms commit not
to enter. Then Sj (j ∈ {1, 2}) sells on both platforms if σ < 1 + Θ2

Θ1
, whereas Sj sells on P1

if σ > 1 + Θ2

Θ1
.

Proof. Lemma 11 implies that Sj’s profit is
σΘk[ ∆̃kj ]

2

16 bSj
if Sj sells exclusively on Pk. Sj’s

profit is
Θ1[ ∆̃1j ]

2

16 bSj
+

Θ2[ ∆̃2j ]
2

16 bSj
if Sj sells on both platforms. Sj’s profit is higher when Sj sells

on P1 than when selling on P2 because

σΘ1

[
∆̃1j

]2

16 bSj
>
σΘ2

[
∆̃2j

]2

16 bSj
⇔ Θ1 > Θ2. (14)

The last inequality in (14) reflects ∆̃1j = ∆̃2j from (10). The last inequality in (14) holds
due to Θ1 > Θ2 by assumption.
Sj’s profit is higher when Sj sells on both platforms than when selling on P1 if:

Θ1

[
∆̃1j

]2

16 bSj
+

Θ2

[
∆̃2j

]2

16 bSj
>
σΘ1

[
∆̃1j

]2

16 bSj
⇔ 1 +

Θ2

Θ1

> σ. (15)

Sj’s profit is higher when Sj sells on P1 than when selling on both platforms if:

Θ1

[
∆̃1j

]2

16 bSj
+

Θ2

[
∆̃2j

]2

16 bSj
<
σΘ1

[
∆̃1j

]2

16 bSj
⇔ 1 +

Θ2

Θ1

< σ. (16)

(15) and (16) reflect ∆̃1j = ∆̃2j from (10). �

Lemma 14. Suppose Condition FS and Assumption 1 hold, and platforms both make no
commitment. Then Sj (j ∈ {1, 2}) sells on both platforms if σ < 1 +

Θ2[∆2j ]
2

Θ1[∆1j ]
2 . Sj sells on P1

if σ > 1 +
Θ2[∆2j ]

2

Θ1[∆1j ]
2 .

Proof. Lemma 12 implies that Sj’s profit is σΘk
βSj

[
( 2+Ωj ) ∆kj

8+Ωj

]2

if Sj sells exclusively on Pk.

Sj’s profit is Θ1

βSj

[
( 2+Ωj ) ∆1j

8+Ωj

]2

+ Θ2

βSj

[
( 2+Ωj ) ∆2j

8+Ωj

]2

if Sj sells on both platforms. Sj’s profit is
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higher when Sj sells on P1 than when selling on P2 because

σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

>
σΘ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

⇔ Θ1 [∆1j]
2 > Θ2 [∆2j]

2 . (17)

The last inequality in (17) holds because Θ1 > Θ2 by assumption and ∆1j > ∆2j due to
cP1j > cP2j by assumption. Therefore, Sj’s profit is higher when Sj sells on both platforms
than when selling on P1 if:

Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

>
σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

⇔ Θ1 [∆1j]
2 + Θ2 [∆2j]

2 > σΘ1 [∆1j]
2 ⇔ 1 +

Θ2 [∆2j]
2

Θ1 [∆1j]
2 > σ.

Sj’s profit is higher when Sj sells on P1 than when selling on both platforms if:

Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

<
σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

⇔ Θ1 [∆1j]
2 + Θ2 [∆2j]

2 < σΘ1 [∆1j]
2 ⇔ 1 +

Θ2 [∆2j]
2

Θ1 [∆1j]
2 < σ. �

Lemma 15. Suppose Condition FS and Assumption 1 hold, P1 commits not to enter and
P2 makes no commitment. Then Sj sells on both platforms if σ < 1 +

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆2j ]2

Θ1[ 8+Ωj ]2[ ∆̃1j ]
2 ,

Sj sells on P1 if σ > 1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆2j ]2

Θ1[ 8+Ωj ]2[ ∆̃1j ]
2 .

Proof. Condition FS ensures that P2 will enter Sj’s market if Sj sells on P2 (j ∈ {1, 2}).
Lemma 11 implies that Sj’s profit is

σΘ1[ ∆̃1j ]
2

16 bSj
if Sj sells exclusively on Pif 1. Lemma 12

implies that Sj’s profit is σΘ2

βSj

[
( 2+Ωj ) ∆2j

8+Ωj

]2

if Sj sells exclusively on P2. (11) implies that:

σΘ1

[
∆̃1j

]2

16 bSj
>

σΘ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

⇔
Θ1

[
∆̃1j

]2

16 βSj [ 1− Ωj ]
>

Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

⇔ Θ1

Θ2

>

[
4
√

1− Ωj ( 2 + Ωj )

8 + Ωj

∆2j

∆̃1j

]2

.

(18)
(18) holds because

Θ1

Θ2

≥ 1 >

[
4
√

1− Ωj ( 2 + Ωj )

8 + Ωj

∆2j

∆̃1j

]2

. (19)
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The last inequality in (19) holds because

4
√

1− Ωj [ 2 + Ωj ]

8 + Ωj

< 1 and
∆2j

∆̃1j

< 1. (20)

The first inequality in (20) holds because

∂
(√

1− Ωj
4[ 2+Ωj ]

8+Ωj

)
∂Ωj

=
√

1− Ωj

∂
(

4[ 2+Ωj ]

8+Ωj

)
∂Ωj

+
∂
(√

1− Ωj

)
∂Ωj

4 [ 2 + Ωj ]

8 + Ωj

=
√

1− Ωj
4 [ 8 + Ωj ]− 4 [ 2 + Ωj ]

[ 8 + Ωj ]2
− 1

2

1√
1− Ωj

4 [ 2 + Ωj ]

8 + Ωj

=
24
√

1− Ωj

[ 8 + Ωj ]2
− 2 [ 2 + Ωj ]√

1− Ωj [ 8 + Ωj ]
=

2

8 + Ωj

[
12
√

1− Ωj

8 + Ωj

− [ 2 + Ωj ]√
1− Ωj

]
< 0, (21)

and therefore, for Ωj ∈ (0, 1),

4
√

1− Ωj [ 2 + Ωj ]

8 + Ωj

< max
4
√

1− Ωj [ 2 + Ωj ]

8 + Ωj

=
4
√

1− 0 [ 2 + 0 ]

8 + 0
= 1. (22)

The last inequality in (21) holds because

12
√

1− Ωj

8 + Ωj

<
[ 2 + Ωj ]√

1− Ωj

⇔ 12 [ 1− Ωj ] < [ 2 + Ωj ] [ 8 + Ωj ]

⇔ 12− 12 Ωj < 16 + [Ωj]
2 + 10 Ωj ⇔ 4 + [Ωj]

2 + 22 Ωj > 0.

The last inequality in (20) holds because

∆̃1j = ∆̃2j > ∆2j. (23)

The equality in (23) reflects (10) and the inequality in (23) reflects (12).
(18)- (23) imply that Sj’s profit is higher when it sells on P1 than when it sells on P2.
Therefore, Sj’s profit is higher when Sj sells on both platforms than when selling on one

platform if:

Θ1

[
∆̃1j

]2

16 bSj
+

Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

>
σΘ1

[
∆̃1j

]2

16 bSj

⇔
Θ1

[
∆̃1j

]2

16 βSj [ 1− Ωj ]
+

Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

>
σΘ1

[
∆̃1j

]2

16 βSj [ 1− Ωj ]
(24)
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⇔ 1 +
Θ2

[
( 2+Ωj ) ∆2j

8+Ωj

]2

Θ1[ ∆̃1j ]
2

16[ 1−Ωj ]

> σ ⇔ σ < 1 +
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆2j ]2

Θ1 [ 8 + Ωj ]2
[

∆̃1j

]2 .

(24) reflects (11).
Sj’s profit is higher when Sj sells on P1 than when selling on both platforms if:

Θ1

[
∆̃1j

]2

16 bSj
+

Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

<
σΘ1

[
∆̃1j

]2

16 bSj

⇔
Θ1

[
∆̃1j

]2

16 βSj [ 1− Ωj ]
+

Θ2

βSj

[
( 2 + Ωj ) ∆2j

8 + Ωj

]2

<
σΘ1

[
∆̃1j

]2

16 βSj [ 1− Ωj ]

⇔ 1 +
Θ2

[
( 2+Ωj ) ∆2j

8+Ωj

]2

Θ1[ ∆̃1j ]
2

16[ 1−Ωj ]

< σ ⇔ σ > 1 +
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆2j ]2

Θ1 [ 8 + Ωj ]2
[

∆̃1j

]2 . �

Lemma 16. Suppose Condition FS and Assumption 1 hold, P2 commits not to enter and
P1 makes no commitment. Then Sj sells on both platforms if: (i) either Θ1

Θ2
> φj and

σ < 1 +
Θ2[ 8+Ωj ]2[ ∆̃2j ]

2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
; (ii) or Θ1

Θ2
< φj and σ < 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2 , Sj sells

on P1 if Θ1

Θ2
> φj and σ > 1 +

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
, and Sj sells on P2 if Θ1

Θ2
< φj and

σ > 1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2 .

Proof. Condition FS ensures that P1 will enter Sj’s market if Sj sells on P1 (j ∈ {1, 2}).
Lemma 11 implies that Sj’s profit is

σΘ2[ ∆̃2j ]
2

16 bS2j
if Sj sells exclusively on P2. Lemma 12 implies

that Sj’s profit is σΘ1

βSj

[
( 2+Ωj ) ∆1j

8+Ωj

]2

if Sj sells exclusively on P1. (11) and (4) imply that:

σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

R
σΘ2

[
∆̃2j

]2

16 bS2j
⇔ Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

R
Θ2

[
∆̃2j

]2

16 βSj [ 1− Ωj ]

⇔ Θ1

Θ2

R
[

8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

∆̃2j

∆1j

]2

⇔ Θ1

Θ2

R φj.

(25)
(22) implies that 8+Ωj

4
√

1−Ωj [ 2+Ωj ]
> 1. (12) and (10) imply that ∆̃2j = ∆̃1j > ∆1j. There-

fore,
φj > 1. (26)

Lemmas 11 and 12 imply Sj’s profit is Θ1

βSj

[
( 2+Ωj ) ∆1j

8+Ωj

]2

+
Θ2[ ∆̃2j ]

2

16 bSj
if Sj sells on both

8



platforms.
Case I. Θ1

Θ2
> φj.

(25) implies that Sj’s profit is higher when it sells on P1 than when it sells on P2. (11)
implies that:

Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

[
∆̃2j

]2

16 bSj
≷ σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

⇔ Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

[
∆̃2j

]2

16 βSj [ 1− Ωj ]
≷ σΘ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

⇔ 1 +

Θ2[ ∆̃2j ]
2

16βSj [ 1−Ωj ]

Θ1

βSj

[
( 2+Ωj ) ∆1j

8+Ωj

]2 ≷ σ ⇔ σ ≶ 1 +
Θ2 [ 8 + Ωj ]2

[
∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
. (27)

(27) implies that Sj’s profit is higher when it sells on both platforms than when it sells

on P1 if σ < 1 +
Θ2[ 8+Ωj ]2[ ∆̃2j ]

2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
, and Sj’s profit is higher when it sells on P1 than

when it sells on both platforms if σ > 1 +
Θ2[ 8+Ωj ]2[ ∆̃2j ]

2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
.

Case II. Θ1

Θ2
< φj.

(25) implies that Sj’s profit is higher when it sells on P2 than when it sells on P1. (11)
implies that:

Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

[
∆̃2j

]2

16 bSj
≷
σΘ2

[
∆̃2j

]2

16 bS2j

⇔ Θ1

βSj

[
( 2 + Ωj ) ∆1j

8 + Ωj

]2

+
Θ2

[
∆̃2j

]2

16 βSj [ 1− Ωj ]
≷

σΘ2

[
∆̃2j

]2

16 βSj [ 1− Ωj ]

⇔
Θ1

βSj

[
( 2+Ωj ) ∆1j

8+Ωj

]2

Θ2[ ∆̃2j ]
2

16βSj [ 1−Ωj ]

+ 1 ≷ σ ⇔ σ ≶ 1 +
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2 . (28)

(28) implies that Sj’s profit is higher when it sells on both platforms than when it sells

on P2 if σ < 1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2 , and Sj’s profit is higher when it sells on P2 than

when it sells on both platforms if σ > 1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2 . �

Lemmas 13, 14, 15, and 16 imply that each seller prefers single-homing if the platform’s
rewards for single-homing sellers (σ) exceed the benefits of multi-homing. The benefits of

multi-homing are: (i) 1 + Θ2

Θ1
if both platforms commit not to enter; (ii) 1 +

Θ2[∆2j ]
2

Θ1[∆1j ]
2 if neither

9



platform commits; (iii) 1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆2j ]2

Θ1[ 8+Ωj ]2[ ∆̃1j ]
2 if P1 commits not to enter and P2 does

not; and (iv) 1 +
Θ2[ 8+Ωj ]2[ ∆̃2j ]

2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
if P1 is stronger and P2 commits not to enter while

P1 does not; and (v) 1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2 if P1 is relatively stronger and P2 commits

not to enter while P1 does not. Conversely, sellers opt for multi-homing if the cumulative
profits from both platforms exceed the additional rewards offered for single-homing.

Lemma 17. Suppose Θ1

Θ2
> φ1j (j ∈ {1, 2}) and Assumption 1 holds. Then 1 >

Θ2[ 8+Ωj ]2[ ∆̃2j ]
2

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆1j ]2
>

Θ2

Θ1
>

Θ2[∆2j ]
2

Θ1[∆1j ]
2 >

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆2j ]2

Θ1[ 8+Ωj ]2[ ∆̃1j ]
2 .

Proof. Assumption 1 implies ∆1j > ∆2j because ∆kj ≡ αj − βSj cSj + ηj c
P
kj by definition

and cP1j > cP2j from Assumption 1. Therefore, [∆2j ]
2

[∆1j ]
2 < 1, and thus,

Θ2

Θ1

>
Θ2 [∆2j]

2

Θ1 [∆1j]
2 . (29)

(20) implies that:

[ 8 + Ωj ]2

16 [ 1− Ωj ] [ 2 + Ωj ]2
> 1 and

16 [ 1− Ωj ] [ ( 2 + Ωj ) ]2

[ 8 + Ωj ]2
< 1. (30)

(30) implies that:

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆2j ]2

Θ1 [ 8 + Ωj ]2
[

∆̃1j

]2 <
Θ2 [∆2j]

2

Θ1

[
∆̃1j

]2 <
Θ2 [∆2j]

2

Θ1 [∆1j]
2 ; and (31)

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
>

Θ2

[
∆̃2j

]2

Θ1 [∆1j]
2 >

Θ2

Θ1

. (32)

The last inequality in (31) holds because ∆̃1j > ∆1j from (12). The last inequality in (32)
holds because ∆̃2j = ∆̃1j > ∆1j from (10) and (12).
(4) implies that when Θ1

Θ2
> φ1j:

Θ1

Θ2

>

[(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

]2

⇒ Θ1

Θ2

Θ2

Θ1

>

[(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

]2
Θ2

Θ1

10



⇒ 1 >
Θ2 [ 8 + Ωj ]2

[
∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
. (33)

(29), (31), (32) and (33) imply that when Θ1

Θ2
> φ1j:

1 >
Θ2 [ 8 + Ωj ]2

[
∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
>

Θ2

Θ1

>
Θ2 [∆2j]

2

Θ1 [∆1j]
2 >

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆2j ]2

Θ1 [ 8 + Ωj ]2
[

∆̃1j

]2 . �

(34)

Lemma 18. Suppose Θ1

Θ2
∈
(√

φ1j, φ1j

)
and Assumption 1 holds. Further suppose Ω1 = Ω2 ∈

(0.5, 1). Then ς11+ ς12

1

2bS1

[
∆̃11

4

]2

+ 1

2bS2

[
∆̃12

4

]2−1 > 1 >
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 >

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2 >

Θ2

Θ1
> Θ2[∆21]2

Θ1[∆11]2
> Θ2[∆22]2

Θ1[∆12]2
>

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆21 ]2

Θ1[ 8+Ωj ]2[ ∆̃11 ]
2 >

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆22 ]2

Θ1[ 8+Ωj ]2[ ∆̃12 ]
2 .

Proof. (11), (12) and (8) imply that:

ςkj >
1

bSj

[
∆̃kj

4

]2

⇔ ςkj >
1

βSj [ 1− Ωj ]

[
∆̃kj

4

]2

(35)

⇔ 1

βSj β
P
j [ 1− Ωj ]

{
ηj [ 2 + Ωj ] ∆kj

8 + Ωj

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]

+
βSj
2

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]2

+
βPj
2

[
( 2 + Ωj ) ∆kj

8 + Ωj

]2


>

1

16 βSj [ 1− Ωj ]

[
∆kj +

ηj

βPj
∆kj

]2

⇔
ηj [ 2 + Ωj ] ∆kj

8 + Ωj

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]
+
βSj
2

[
∆kj

2
+
ηj ( 2 + Ωj ) ∆kj

2βSj ( 8 + Ωj )

]2

+
βPj
2

[
( 2 + Ωj ) ∆kj

8 + Ωj

]2

>
βPj
16

[
∆kj +

ηj

βPj
∆kj

]2

⇔
ηj [ 2 + Ωj ] ∆kj ∆kj

2 [ 8 + Ωj ]
+

[
ηj
]2

[ 2 + Ωj ]2 [∆kj]
2

2 βSj [ 8 + Ωj ]2
+
βPj [ 2 + Ωj ]2 [∆kj]

2

2 [ 8 + Ωj ]2

+
βSj
8

[
∆kj +

ηj ( 2 + Ωj ) ∆kj

βSj ( 8 + Ωj )

]2

>
βPj
16

[
∆kj +

ηj

βPj
∆kj

]2

11



⇔
ηj [ 2 + Ωj ] ∆kj ∆kj

8 + Ωj

+

[
ηj
]2

[ 2 + Ωj ]2 [∆kj]
2

βSj [ 8 + Ωj ]2
+
βPj [ 2 + Ωj ]2 [∆kj]

2

[ 8 + Ωj ]2

+
βSj
4

[ (
∆kj

)2
+

(
ηj
)2

( 2 + Ωj )2 (∆kj)
2(

βSj
)2

( 8 + Ωj )2
+

2 ηj ( 2 + Ωj ) ∆kj ∆kj

βSj ( 8 + Ωj )

]
>

βPj
8

[
∆kj +

ηj

βPj
∆kj

]2

⇔
ηj [ 2 + Ωj ] ∆kj ∆kj

8 + Ωj

+

[
ηj
]2

[ 2 + Ωj ]2 [∆kj]
2

βSj [ 8 + Ωj ]2
+
βPj [ 2 + Ωj ]2 [∆kj]

2

[ 8 + Ωj ]2
+
βSj
[
∆kj

]2
4

+
βSj
[
ηj
]2

[ 2 + Ωj ]2 [∆kj]
2

4
[
βSj
]2

[ 8 + Ωj ]2
+

2 βSj ηj [ 2 + Ωj ] ∆kj ∆kj

4 βSj [ 8 + Ωj ]
>

βPj
8

[
∆kj +

ηj

βPj
∆kj

]2

⇔
4 βSj

[
ηj
]2

[ 2 + Ωj ]2 + 4
[
βSj
]2
βPj [ 2 + Ωj ]2 + βSj

[
ηj
]2

[ 2 + Ωj ]2

4
[
βSj
]2

[ 8 + Ωj ]2
[∆kj]

2

+
6 βSj ηj [ 2 + Ωj ] ∆kj ∆kj

4 βSj [ 8 + Ωj ]
+
βSj
[
∆kj

]2
4

>
βPj
8

[
∆kj +

ηj

βPj
∆kj

]2

⇔
4
[
ηj
]2

+ 4 βSj β
P
j +

[
ηj
]2

4 βSj [ 8 + Ωj ]2
[ 2 + Ωj ]2 [∆kj]

2

+
6 βSj ηj [ 2 + Ωj ] ∆kj ∆kj

4 βSj [ 8 + Ωj ]
+
βSj
[
∆kj

]2
4

>
βPj
8

[
∆kj +

ηj

βPj
∆kj

]2

⇔

[
5
(
ηj
)2

+ 4 βSj β
P
j

]
[ 2 + Ωj ]2 [∆kj]

2

βSj [ 8 + Ωj ]2
+

6 βSj ηj [ 2 + Ωj ] ∆kj ∆kj

βSj [ 8 + Ωj ]
+βSj

[
∆kj

]2
>

βPj
2

[
[∆kj]

2 +

(
ηj
)2 (

∆kj

)2(
βPj
)2 +

2 ηj ∆kj ∆kj

βPj

]

⇔
βSj β

P
j [ 5 Ωj + 4 ] [ 2 + Ωj ]2 [∆kj]

2

βSj [ 8 + Ωj ]2
+

6 ηj [ 2 + Ωj ] ∆kj ∆kj

8 + Ωj

+βSj
[
∆kj

]2
>

βPj [∆kj]
2

2
+

[
ηj
]2 [

∆kj

]2
2 βPj

+ ηj ∆kj ∆kj

⇔
βPj [ 5 Ωj + 4 ] [ 2 + Ωj ]2 [∆kj]

2

[ 8 + Ωj ]2
−
βPj [∆kj]

2

2
+

6 ηj [ 2 + Ωj ] ∆kj ∆kj

8 + Ωj

−ηj ∆kj ∆kj

+ βSj
[
∆kj

]2 − [ηj]2 [∆kj

]2
2 βPj

> 0

⇔ 2 [ 5 Ωj + 4 ] [ 2 + Ωj ]2 − [ 8 + Ωj ]2

2 [ 8 + Ωj ]2
βPj [∆kj]

2+
6 [ 2 + Ωj ]− [ 8 + Ωj ]

[ 8 + Ωj ]
ηj ∆kj ∆kj

12



+
2 βPj β

S
j −

[
ηj
]2

2 βPj

[
∆kj

]2
> 0

⇔ 2 [ 5 Ωj + 4 ] [ 2 + Ωj ]2 − [ 8 + Ωj ]2

2 [ 8 + Ωj ]2
βPj [∆kj]

2+
[ 4 + 5 Ωj ] ηj ∆kj ∆kj

[ 8 + Ωj ]

+
[ 2− Ωj ] βSj

[
∆kj

]2
2

> 0. (36)

(36) holds because Ωj ∈ (0, 1) and

2 [ 5 Ωj + 4 ] [ 2 + Ωj ]2 − [ 8 + Ωj ]2 > 0 ⇔ 2 [ 5 Ωj + 4 ] [ 2 + Ωj ]2 > [ 8 + Ωj ]2

⇔ 2 [ 5 Ωj + 4 ]
[

4 + (Ωj)
2 + 4 Ωj

]
> 64 + [Ωj]

2 + 16 Ωj

⇔ [ 5 Ωj + 4 ]
[

8 + 2 (Ωj)
2 + 8 Ωj

]
> 64 + [Ωj]

2 + 16 Ωj

⇔ 5 Ωj

[
8 + 2 (Ωj)

2 + 8 Ωj

]
+ 4

[
8 + 2 (Ωj)

2 + 8 Ωj

]
> 64 + [Ωj]

2 + 16 Ωj

⇔ 40 Ωj + 10 [Ωj]
3 + 40 [Ωj]

2 + 32 + 8 [Ωj]
2 + 32 Ωj − 64− [Ωj]

2 − 16 Ωj > 0

⇔ 56 Ωj + 10 [Ωj]
3 + 47 [Ωj]

2 − 32 > 0 ⇔ Ωj

[
56 + 10 (Ωj)

2 + 47Ωj

]
> 32. (37)

(37) holds because Ωj ∈ (0.5, 1).
(35) implies that:

ς11 + ς12 >
1

bS1

[
∆̃11

4

]2

+
1

bS2

[
∆̃12

4

]2

⇔ ς11 + ς12 −
1

2bS1

[
∆̃11

4

]2

− 1

2bS2

[
∆̃12

4

]2

>
1

2bS1

[
∆̃11

4

]2

+
1

2bS2

[
∆̃12

4

]2

⇔ ς11 + ς12

1
2bS1

[
∆̃11

4

]2

+ 1
2bS2

[
∆̃12

4

]2 − 1 > 1. (38)

Θ1

Θ2
∈
(√

φ1j, φ1j

)
and (38) imply that:

Θ1

Θ2

< φ11 <

 ς11 + ς12

1
2bS1

(
∆̃11

4

)2

+ 1
2bS2

(
∆̃12

4

)2 − 1

φ11. (39)

(4) and (39) imply that:

Θ1

Θ2

<

 ς11 + ς12

1
2bS1

(
∆̃11

4

)2

+ 1
2bS2

(
∆̃12

4

)2 − 1

 [ 8 + Ωj ]2
[

∆̃21

]2

16 [ 1− Ωj ] [ ( 2 + Ωj ) ∆11 ]2

13



⇔ 16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆11 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃21

]2 <
ς11 + ς12

1
2bS1

(
∆̃11

4

)2

+ 1
2bS2

(
∆̃12

4

)2 − 1 (40)

(4) implies that when Θ1

Θ2
< φ1j:

Θ1

Θ2

<

[(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

]2

(41)

⇒ Θ1

Θ2

16 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

[ 8 + Ωj ]2
[

∆̃2j

]2 <

[(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

]2
16 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

[ 8 + Ωj ]2
[

∆̃2j

]2

⇒ 16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2 < 1.

(42)
(41) implies that:

Θ1

Θ2

Θ2

Θ1

<

[(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

]2
Θ2

Θ1

⇒ 1 <
Θ2 [ 8 + Ωj ]2

[
∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
. (43)

(42) and (43) imply that:

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2 < 1 <
Θ2 [ 8 + Ωj ]2

[
∆̃2j

]2

16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2
. (44)

(4), (30), Θ1

Θ2
∈
(√

φ1j, φ1j

)
, and ∆̃2j > ∆1j from (13) imply that:

Θ1

Θ2

>

(
8 + Ωj

4
√

1− Ωj ( 2 + Ωj )

)
∆̃2j

∆1j

> 1⇒
[

Θ1

Θ2

]2

>
[ 8 + Ωj ]2

[
∆̃2j

]2

16 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

⇒ 16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2 >
Θ2

Θ1

.

(45)
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(29), (31), (44), and (45) imply that:

1 >
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆1j ]2

Θ2 [ 8 + Ωj ]2
[

∆̃2j

]2 >
Θ2

Θ1

>
Θ2 [∆2j]

2

Θ1 [∆1j]
2 >

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆2j ]2

Θ1 [ 8 + Ωj ]2
[

∆̃1j

]2 .

(46)
Observe that:

∂
(

∆2j

∆1j

)
∂cSj

s
=

∂∆2j

∂cSj
∆1j−

∂∆1j

∂cSj
∆2j = −βSj ∆1j+β

S
j ∆2j = βSj [ ∆2j −∆1j ] = βSj ηj

[
cP2j − cP1j

]
< 0.

(47)
The inequality in (47) holds because cP1j > cP2j by assumption.

cS1 < cS2 from Assumption 1 and (47) imply that:[
∆22

∆12

]2

<

[
∆21

∆11

]2

. (48)

Further observe that:

∂
(

∆1j

∆̃2j

)
∂cSj

s
=

∂∆1j

∂cSj
∆̃2j −

∂∆̃2j

∂cSj
∆1j = − βSj ∆̃2j + bSj ∆1j < 0, and (49)

∂
(

∆2j

∆̃1j

)
∂cSj

s
=

∂∆2j

∂cSj
∆̃1j −

∂∆̃1j

∂cSj
∆2j = − βSj ∆̃1j + bSj ∆2j < 0. (50)

The inequalities in (49) and (50) hold because βSj > bSj from (11), ∆̃2j > ∆1j and ∆̃1j > ∆2j

from (13).
cS1 < cS2 from Assumption 1, (49), and (50) imply that:[

∆12

∆̃22

]2

<

[
∆11

∆̃21

]2

and
[

∆22

∆̃12

]2

<

[
∆21

∆̃11

]2

. (51)

(46), (48), and (51) imply that:

1 >
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆11 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃21

]2 >
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 >
Θ2

Θ1

>
Θ2 [∆21]2

Θ1 [∆11]2

>
Θ2 [∆22]2

Θ1 [∆12]2
>

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 >
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 . �

Condition FR ΘkMk2−
Θk[ ∆̃k1 ]

2

8 bS1
− Θk[ ∆̃k2 ]

2

8 bS2
< F < min{ΘkMk2−

Θk[ ∆̃k2 ]
2

8 bS2
, ΘkMk1−

σΘk[ ∆̃k1 ]
2

8 bS1
− σΘk[ ∆̃k2 ]

2

8 bS2
}.
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Condition FR ensures that the feasibility of platform entry is maintained in scenarios
allowing multi-homing.

Proposition 3. Suppose Θ1

Θ2
∈
(√

φ1j, φ1j

)
and Assumption 1 holds. Further suppose Ω1 =

Ω2 and Condition FR holds. Then in equilibrium: (i) if σ > 1+
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 , both P1

and P2 commit not to enter, and both sellers sell on P1; (ii) if σ ∈ (1+
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2 ,

1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 ), P1 makes no commitment and P2 commits not to enter, and

S1 sells on both platforms while S2 sells exclusively on P2; (iii) if σ ∈ (1 + Θ2[∆21]2

Θ1[∆11]2
,

1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2 ), P1 makes no commitment and P2 commits not to enter, and

both sellers sell on both platforms; (iv) if σ ∈
(

1 + Θ2[∆22]2

Θ1[∆12]2
, 1 + Θ2[∆21]2

Θ1[∆11]2

)
, both platforms

make no commitments, and S1 sells on both platforms and S2 sells on P1; and (v) if

σ ∈
(

1, 1 + Θ2[∆22]2

Θ1[∆12]2

)
, both platforms make no commitments, and each seller sells on both

platforms.

Proof. Condition FS ensures that each platform enters each seller’s market if the platform
makes no commitment. Since S1 and S2 sell independent products, S1’s choice of platform
is independent of S2’s choice of platform.
Case I. σ > 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 . Lemma 18 implies that:

σ > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆11 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(52)
If P2 makes no commitment, (52), Lemmas 14 and 15 imply that both sellers sell on P1.

Lemmas 11 and 12 imply that: (i) P1’s profit is σΘ1M11 − F + σΘ1M12 − F if P1 makes

no commitment; and (ii) P1’s profit is
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter.

Condition FS ensures that Θ1M1j −F >
Θ1[ ∆̃1j ]

2

8 bSj
, i.e., P1 secures more profit by making no

commitment than by committing to no entry. Therefore, if P2 makes no commitment, then
P1 makes no commitment, and both S1 and S2 sell on P1 if σ > 2.

If P2 commits not to enter, (52), Lemmas 13 and 16 imply that both sellers: (i) sell on
P2 if P1 makes no commitment; and (ii) sell on P1 if P1 commits not to enter. Lemmas 11

and 12 imply that P1’s profit is: (i)
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter; and

(ii) zero if P1 makes no commitment. Therefore, P1 secures more profit by committing not
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to enter than by making no commitment in this case. Consequently, if P2 commits not to
enter, then P1 commits not to enter, and both S1 and S2 sell on P1 if σ > 2.

If P1 commits not to enter, (52), Lemmas 13 and 15 imply that both sellers sell on P1,
regardless of P2’s commitment. Therefore, if P1 commits not to enter, then P2 is indifferent
between making no commitment and committing not to enter if σ > 2.

If P1 makes no commitment, (52), Lemmas 14 and 16 imply that both sellers: (i) sell on
P1 if P2 makes no commitment; and (ii) sell on P2 if P2 commits not to enter. Lemmas

11 and 12 imply that P2’s profit is: (i)
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter;

and (ii) zero if P2 makes no commitment. Therefore, P2 secures more profit by committing
not to enter than by making no commitment in this case. Consequently, if P1 makes no
commitment, then P2 commits not to enter, and both S1 and S2 sell on P1 if σ > 2.

Consequently, in equilibrium, both P1 and P2 commit not to enter, and both sellers sell
on P1 if σ > 2.

Case II. σ ∈
(

1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2 , 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2

)
. Lemma 18 implies

that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > σ > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(53)
If P2 makes no commitment, (53), Lemmas 14 and 15 imply that both sellers sell on P1.

Lemmas 11 and 12 imply that: (i) P1’s profit is σΘ1M11 − F + σΘ1M12 − F if P1 makes

no commitment; and (ii) P1’s profit is
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter.

Condition FS ensures that Θ1M1j −F >
Θ1[ ∆̃1j ]

2

8 bSj
, i.e., P1 secures more profit by making no

commitment than by committing to no entry. Therefore, if P2 makes no commitment, then
P1 makes no commitment, and both S1 and S2 sell on P1 in this case.

If P2 commits not to enter, (53), Lemmas 13 and 16 imply that: (i) both sellers sell on
P1 if P1 commits not to enter; and (ii) S1 sells on both platforms and S2 sells on P2 if P1
makes no commitment. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F if P1

makes no commitment; and (ii)
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FR ensures that Θ1M11−F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter,

then P1 makes no commitment in this case.

If P1 makes no commitment, (53), Lemmas 14 and 16 imply that: (i) both sellers sell on
P1 if P2 makes no commitment; and (ii) S1 sells on both platforms and S2 sells on P2 if P2
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commits not to enter. Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no

commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures

more profit by committing not to enter than by making no commitment. Consequently, if
P1 makes no commitment, then P2 commits not to enter, and S1 sells on both platforms
while S2 sells exclusively on P2 in this case.

If P1 commits not to enter, (53), Lemmas 13 and 15 imply that both sellers sell on P1
regardless of P2’s commitment.

Consequently, in equilibrium, P1 makes no commitment and P2 commits not to enter, and
S1 sells on both platforms while S2 sells exclusively on P2 if σ ∈ (1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2 ,

1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 ).

Case III. σ ∈
(

1 + Θ2

Θ1
, 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2

)
. Lemma 18 implies that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > σ > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(54)
If P2 makes no commitment, (54), Lemmas 14 and 15 imply that both sellers sell on P1.

Lemmas 11 and 12 imply that: (i) P1’s profit is σΘ1M11 − F + σΘ1M12 − F if P1 makes

no commitment; and (ii) P1’s profit is
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter.

Condition FS ensures that Θ1M1j −F >
Θ1[ ∆̃1j ]

2

8 bSj
, i.e., P1 secures more profit by making no

commitment than by committing to no entry. Therefore, if P2 makes no commitment, then
P1 makes no commitment, and both S1 and S2 sell on P1 in this case.

If P2 commits not to enter, (54), Lemmas 13 and 16 imply that: (i) both sellers sell on
P1 if P1 commits not to enter; and (ii) both sellers sell on both platforms if P1 makes no
commitment. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11−F +Θ1M12−F if P1
makes no commitment; and (ii)

σΘ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FR ensures that Θ1M11 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
, which implies that Θ1M11 − F +

Θ1M12 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, then P1 makes

no commitment.

If P1 makes no commitment, (54), Lemmas 14 and 16 imply that both sellers: (i) sell
on P1 if P2 makes no commitment; and (ii) sell on both platforms if P2 commits not to
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enter. Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no commitment;

and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures more profit

by committing not to enter than by making no commitment. Consequently, if P1 makes no
commitment, then P2 commits not to enter, and both sellers sell on both platforms in this
case.

If P1 commits not to enter, (54), Lemmas 13 and 15 imply that both sellers sell on P1
regardless of P2’s commitment.

Consequently, in equilibrium, P1 makes no commitment and P2 commits not to enter,

and both sellers sell on both platforms if σ ∈
(

1 + Θ2

Θ1
, 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆12 ]2

Θ2[ 8+Ωj ]2[ ∆̃22 ]
2

)
.

Case IV. σ ∈
(

1 + Θ2[∆21]2

Θ1[∆11]2
, 1 + Θ2

Θ1

)
. Lemma 18 implies that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> σ > 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(55)
If P2 makes no commitment, (55), Lemmas 14 and 15 imply that both sellers sell on P1.

Lemmas 11 and 12 imply that: (i) P1’s profit is σΘ1M11 − F + σΘ1M12 − F if P1 makes

no commitment; and (ii) P1’s profit is
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter.

Condition FS ensures that Θ1M1j −F >
Θ1[ ∆̃1j ]

2

8 bSj
, i.e., P1 secures more profit by making no

commitment than by committing to no entry. Therefore, if P2 makes no commitment, then
P1 makes no commitment, and both S1 and S2 sell on P1 in this case.

If P2 commits not to enter, (55), Lemmas 13 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii)
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FS ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, which implies that Θ1M11 − F + Θ1M12 − F >

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, P1 makes no commitment, and

each seller sells on both platforms in this case.

If P1 makes no commitment, (55), Lemmas 14 and 16 imply that both sellers: (i) sell
on P1 if P2 makes no commitment; and (ii) sell on both platforms if P2 commits not to
enter. Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no commitment;

and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures more profit

19



by committing not to enter than by making no commitment. Consequently, if P1 makes no
commitment, then P2 commits not to enter, and both sellers sell on both platforms in this
case.

If P1 commits not to enter, (55), Lemmas 13 and 15 imply that: (i) each seller sells on
both platforms if P2 commits not to enter; and (ii) sells on P1 if P2 makes no commitment.
Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no commitment; and

(ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures more profit by

committing not to enter than by making no commitment. Consequently, if P1 commits not
to enter, then P2 commits not to enter, and both sellers sell on both platforms in this case.

Consequently, in equilibrium, P1 makes no commitment and P2 commits not to enter,
and both sellers sell on both platforms if σ ∈

(
1 + Θ2[∆21]2

Θ1[∆11]2
, 1 + Θ2

Θ1

)
.

Case V. σ ∈
(

1 + Θ2[∆22]2

Θ1[∆12]2
, 1 + Θ2[∆21]2

Θ1[∆11]2

)
. Lemma 18 implies that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2
> σ

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(56)
If P2 makes no commitment, (56), Lemmas 14 and 15 imply that: (i) S1 sells on both

platforms and S2 sells on P1 if P1 makes no commitment; and (ii) both sellers sell on P1 if P1
commits not to enter. Lemmas 11 and 12 imply that: (i) P1’s profit is Θ1M11−F+σΘ1M12−
F if P1 makes no commitment; and (ii) P1’s profit is

σΘ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits

not to enter. Condition FR ensures that Θ1M11 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
>

σΘ1[ ∆̃11 ]
2

8 bS1
,

and σΘ1M12−F >
σΘ1[ ∆̃12 ]

2

8 bS2
, which implies that Θ1M11−F + σΘ1M12−F >

σΘ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 makes no commitment, then P1 makes no commitment, and S1

sells on both platforms and S2 sells on P1 in this case.

If P2 commits not to enter, (56), Lemmas 13 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii)
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FR ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, which implies that Θ1M11 − F + Θ1M12 − F >

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, P1 makes no commitment, and

each seller sells on both platforms in this case.
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If P1 makes no commitment, (56), Lemmas 14 and 16 imply that: (i) S1 sells on both
platforms and S2 sells on P1 if P2 makes no commitment; and (ii) each seller sells on both
platforms if P2 commits not to enter. Lemmas 11 and 12 imply that P2’s profit is: (i)

Θ2M21 − F if P2 makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to

enter. Condition FR ensures that Θ2M21−F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
,

i.e., P2 secures more profit by making no commitment than by committing not to enter.
Consequently, if P1 makes no commitment, then P2 makes no commitment, and S1 sells on
both platforms and S2 sells on P1 in this case.

If P1 commits not to enter, (56), Lemmas 13 and 15 imply that: (i) each seller sells on
both platforms if P2 commits not to enter; and (ii) sells on P1 if P2 makes no commitment.
Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no commitment; and

(ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures more profit by

committing not to enter than by making no commitment. Consequently, if P1 commits not
to enter, then P2 commits not to enter, and both sellers sell on both platforms in this case.

Consequently, in equilibrium, both platforms make no commitments, and S1 sells on both
platforms and S2 sells on P1 if σ ∈

(
1 + Θ2[∆22]2

Θ1[∆12]2
, 1 + Θ2[∆21]2

Θ1[∆11]2

)
.

Case VI. σ ∈
(

1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆21 ]2

Θ1[ 8+Ωj ]2[ ∆̃11 ]
2 , 1 + Θ2[∆22]2

Θ1[∆12]2

)
. Lemma 18 implies that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> σ > 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(57)
If P2 makes no commitment, (57), Lemmas 14 and 15 imply that: (i) each seller sells on

both platforms if P1 makes no commitment; and (ii) both sellers sell on P1 if P1 commits
not to enter. Lemmas 11 and 12 imply that: (i) P1’s profit is Θ1M11 − F + Θ1M12 − F if

P1 makes no commitment; and (ii) P1’s profit is
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to

enter. Condition FR ensures that Θ1M11 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
, which implies that

Θ1M11 − F + Θ1M12 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 makes no commitment,

then P1 makes no commitment, and each seller sells on both platforms in this case.

If P2 commits not to enter, (57), Lemmas 13 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii)
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition
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FR ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, which implies that Θ1M11 − F + Θ1M12 − F >

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, P1 makes no commitment, and

each seller sells on both platforms in this case.

If P1 makes no commitment, (57), Lemmas 14 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P2’s profit is: (i) Θ2M21 − F + Θ2M22 − F if P2

makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Condition FR

ensures that Θ2M21 − F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
, which implies that

Θ2M21−F + Θ2M22−F >
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
. Consequently, if P1 makes no commitment,

then P2 makes no commitment, and each seller sells on both platforms in this case.

If P1 commits not to enter, (57), Lemmas 13 and 15 imply that each seller: (i)sells on
both platforms if P2 commits not to enter; and (ii) sells on P1 if P2 makes no commitment.
Lemmas 11 and 12 imply that P2’s profit is: (i) zero if P2 makes no commitment; and

(ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Therefore, P2 secures more profit by

committing not to enter than by making no commitment. Consequently, if P1 commits not
to enter, then P2 commits not to enter, and both sellers sell on both platforms in this case.

Consequently, in equilibrium, both platforms make no commitments, and each seller sells

on both platforms if σ ∈
(

1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆21 ]2

Θ1[ 8+Ωj ]2[ ∆̃11 ]
2 , 1 + Θ2[∆22]2

Θ1[∆12]2

)
.

Case VII. σ ∈
(

1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆22 ]2

Θ1[ 8+Ωj ]2[ ∆̃12 ]
2 , 1 +

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆21 ]2

Θ1[ 8+Ωj ]2[ ∆̃11 ]
2

)
. Lemma 18 implies

that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > σ > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 .

(58)
If P2 makes no commitment, (58), Lemmas 14 and 15 imply that: (i) each seller sells on

both platforms if P1 makes no commitment; and (ii) S1 sells on both platforms and S2 sells
on P1 if P1 commits not to enter. Lemmas 11 and 12 imply that: (i) P1’s profit is Θ1M11−
F + Θ1M12 − F if P1 makes no commitment; and (ii) P1’s profit is

Θ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
if

P1 commits not to enter. Condition FR ensures that Θ1M11 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
>

Θ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
, which implies that Θ1M11 − F + Θ1M12 − F >

σΘ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
.
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Therefore, if P2 makes no commitment, then P1 makes no commitment, and each seller sells
on both platforms in this case.

If P2 commits not to enter, (58), Lemmas 13 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii)
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FR ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, which implies that Θ1M11 − F + Θ1M12 − F >

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, P1 makes no commitment, and

each seller sells on both platforms in this case.

If P1 makes no commitment, (58), Lemmas 14 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P2’s profit is: (i) Θ2M21 − F + Θ2M22 − F if P2

makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Condition FR

ensures that Θ2M21 − F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
, which implies that

Θ2M21−F + Θ2M22−F >
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
. Consequently, if P1 makes no commitment,

then P2 makes no commitment, and each seller sells on both platforms in this case.

If P1 commits not to enter, (58), Lemmas 13 and 15 imply that: (i) each seller sells
on both platforms if P2 commits not to enter; and (ii) S1 sells on both platforms and S2
sells on P1 if P2 makes no commitment. Lemmas 11 and 12 imply that P2’s profit is: (i)

Θ2M21 − F if P2 makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to

enter. Condition FR ensures that Θ2M21−F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
,.

Consequently, if P1 commits not to enter, then P2 commits not to enter, and S1 sells on
both platforms and S2 sells on P1 in this case.

Consequently, in equilibrium, both platforms make no commitments, each seller sells on

both platforms if σ ∈
(

1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆22 ]2

Θ1[ 8+Ωj ]2[ ∆̃12 ]
2 , 1 +

16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆21 ]2

Θ1[ 8+Ωj ]2[ ∆̃11 ]
2

)
.

Case VIII. σ ∈
(

1, 1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆22 ]2

Θ1[ 8+Ωj ]2[ ∆̃12 ]
2

)
. Lemma 18 implies that:

1+
16Θ1 [ 1− Ω1 ] [ ( 2 + Ω1 ) ∆11 ]2

Θ2 [ 8 + Ω1 ]2
[

∆̃21

]2 > 1+
16Θ1 [ 1− Ωj ] [ ( 2 + Ωj ) ∆12 ]2

Θ2 [ 8 + Ωj ]2
[

∆̃22

]2 > 1+
Θ2

Θ1

> 1+
Θ2 [∆21]2

Θ1 [∆11]2

> 1+
Θ2 [∆22]2

Θ1 [∆12]2
> 1+

16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆21 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃11

]2 > 1+
16Θ2 [ 1− Ωj ] [ ( 2 + Ωj ) ∆22 ]2

Θ1 [ 8 + Ωj ]2
[

∆̃12

]2 > σ.

(59)
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If P2 makes no commitment, (59), Lemmas 14 and 15 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that: (i) P1’s profit is Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii) P1’s profit is
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter.

Condition FR ensures that Θ1M11−F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
>

Θ1[ ∆̃11 ]
2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
, which

implies that Θ1M11 − F + Θ1M12 − F >
σΘ1[ ∆̃11 ]

2

8 bS1
+

σΘ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 makes no

commitment, then P1 makes no commitment, and each seller sells on both platforms in this
case.

If P2 commits not to enter, (59), Lemmas 13 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P1’s profit is: (i) Θ1M11 − F + Θ1M12 − F if P1

makes no commitment; and (ii)
Θ1[ ∆̃11 ]

2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not to enter. Condition

FR ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, which implies that Θ1M11 − F + Θ1M12 − F >

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
. Therefore, if P2 commits not to enter, P1 makes no commitment, and

each seller sells on both platforms in this case.

If P1 makes no commitment, (59), Lemmas 14 and 16 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P2’s profit is: (i) Θ2M21 − F + Θ2M22 − F if P2

makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Condition FR

ensures that Θ2M21 − F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
, which implies that

Θ2M21−F + Θ2M22−F >
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
. Consequently, if P1 makes no commitment,

then P2 makes no commitment, and each seller sells on both platforms in this case.

If P1 commits not to enter, (59), Lemmas 13 and 15 imply that each seller sells on both
platforms. Lemmas 11 and 12 imply that P2’s profit is: (i) Θ2M21 − F + Θ2M22 − F if P2

makes no commitment; and (ii)
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
if P2 commits not to enter. Condition

FR ensures that Θ2M21 − F >
σΘ2[ ∆̃21 ]

2

8 bS1
+

σΘ2[ ∆̃22 ]
2

8 bS2
>

Θ2[ ∆̃21 ]
2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
, which implies

that Θ2M21 − F + Θ2M22 − F >
Θ2[ ∆̃21 ]

2

8 bS1
+

Θ2[ ∆̃22 ]
2

8 bS2
. Consequently, if P1 commits not to

enter, then P2 makes no commitment, and each seller sells on both platforms in this case.

Consequently, in equilibrium, both platforms make no commitments, each seller sells on

both platforms if σ ∈
(

1, 1 +
16Θ2[ 1−Ωj ][ ( 2+Ωj ) ∆22 ]2

Θ1[ 8+Ωj ]2[ ∆̃12 ]
2

)
. �

Proposition 4. Suppose Θ1

Θ2
∈
(√

φ1j, φ1j

)
and Assumption 1 holds. Further suppose Ω1 =

Ω2 ∈ (0.5, 1) and platform entry is feasible (Condition FR holds). Then CS < CSM if

σ ∈ (1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 , ς11+ ς12

1

2bS1

[
∆̃11

4

]2

+ 1

2bS2

[
∆̃12

4

]2 ).
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Proof. In the presence of platform entry, consumer surplus when consuming Pk’s product
and Sj’s product is given by

CS = U
(
QP
kj, Q

S
kj

)
−pPkjQP

kj−pSkjQS
kj

= d1kj Q
P
kj+d2kj Q

S
kj−

1

2

[
d3kj

(
QP
kj

)2
+ 2 d4kj Q

P
kj Q

S
kj + d5kj

(
QS
kj

)2
]
−pPkjQP

kj−pSkjQS
kj. (60)

(60) implies inverse demands are given by:

pPkj = d1kj − d3kj Q
P
kj − d4kj Q

S
kj, (61)

pSkj = d2kj − d4kj Q
P
kj − d5kj Q

S
kj. (62)

(1) and (2) imply that:

pPkj =
ηjαj + βSj θjαj

βSj β
P
j −

[
ηj
]2 − βSj

βSj β
P
j −

[
ηj
]2 qPkj − ηj

βSj β
P
j −

[
ηj
]2 qSkj (63)

pSkj =
ηjθjαj + βPj αj

βSj β
P
j −

[
ηj
]2 − ηj

βSj β
P
j −

[
ηj
]2 qPkj − βPj

βSj β
P
j −

[
ηj
]2 qSkj (64)

(61) - (64) imply that:

d1kj =
ηjαj + βSj θjαj

βSj β
P
j −

[
ηj
]2 , d2kj =

ηjθjαj + βPj αj

βSj β
P
j −

[
ηj
]2 , d3kj =

1

σΘk

βSj

βSj β
P
j −

[
ηj
]2 ,

d4kj =
1

σΘk

ηj

βSj β
P
j −

[
ηj
]2 , d5kj =

1

σΘk

βPj

βSj β
P
j −

[
ηj
]2 , (65)

where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk.
(60) implies that:

CS = d1kj Q
P
kj + d2kj Q

S
kj −

1

2
d3kj

(
QP
kj

)2 − d4kj Q
P
kj Q

S
kj −

1

2
d5kj

(
QS
kj

)2

− pPkjQ
P
kj − pSkjQS

kj.

= d1kj Q
P
kj − d3kj

(
QP
kj

)2
+

1

2
d3kj

(
QP
kj

)2 − d4kj Q
P
kj Q

S
kj

+d2kj Q
S
kj − d5kj

(
QS
kj

)2
+

1

2
d5kj

(
QS
kj

)2 − d4kj Q
P
kj Q

S
kj

+d4kj Q
P
kj Q

S
kj − pPkjQ

P
kj − pSkjQS

kj

= QP
kj

[
d1kj − d3kjQ

P
kj − d4kj Q

S
kj

]
+QS

kj

[
d2kj − d5kjQ

S
kj − d4kj Q

P
kj

]
+

1

2
d3kj

(
QP
kj

)2
+

1

2
d5kj

(
QS
kj

)2
+ d4kj Q

P
kj Q

S
kj − pPkjQ

P
kj − pSkjQS

kj. (66)
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(61), (62), and (66) imply that:

CS = QP
kjp

P
kj +QS

kjp
S
kj +

1

2
d3kj

(
QP
kj

)2
+

1

2
d5kj

(
QS
kj

)2
+ d4kj Q

P
kj Q

S
kj − pPkjQ

P
kj − pSkjQS

kj

=
1

2
d3kj

(
QP
kj

)2
+

1

2
d5kj

(
QS
kj

)2
+ d4kj Q

P
kj Q

S
kj.

(67)
(65) and (67) imply that:

CS =
1

2σΘk

βSj

βSj β
P
j −

[
ηj
]2 [QP

kj

]2
+

1

2σΘk

βPj

βSj β
P
j −

[
ηj
]2 [QS

kj

]2
+

1

σΘk

ηj

βSj β
P
j −

[
ηj
]2 QP

kj Q
S
kj

=

βSj
2

[
QP
kj

]2
+

βPj
2

[
QS
kj

]2
+ ηj Q

P
kj Q

S
kj

σΘk

[
βSj β

P
j −

(
ηj
)2
] ,

(68)
where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk.
Lemma 6 and (68) imply that in the presence of platform entry, consumer surplus when

consuming Pk’s product and Sj’s product is:

CS =

βSj
2

[
σΘk ∆kj

2
+

ηjσΘk( 2+Ωj ) ∆kj

2βSj ( 8+Ωj )

]2

+
βPj
2

[
σΘk[ 2+Ωj ] ∆kj

8+Ωj

]2

+ ηj

[
σΘk ∆kj

2
+

ηjσΘk[ 2+Ωj ] ∆kj

2βSj [ 8+Ωj ]

]
σΘk[ 2+Ωj ] ∆kj

8+Ωj

σΘk

[
βSj β

P
j −

(
ηj
)2
]

= σΘk

βSj
2

[
∆kj

2
+

ηj( 2+Ωj ) ∆kj

2βSj ( 8+Ωj )

]2

+
βPj
2

[
[ 2+Ωj ] ∆kj

8+Ωj

]2

+ ηj

[
∆kj

2
+

ηj [ 2+Ωj ] ∆kj

2βSj [ 8+Ωj ]

]
[ 2+Ωj ] ∆kj

8+Ωj

βSj β
P
j −

[
ηj
]2 = σΘkςkj,

(69)
where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk. The last
equality in (69) reflects (8).
(60) implies that if Sj sells on Pk and Pk does not enter Sj’s product market, then

QP
kj = 0. Thus, consumer surplus when consuming Sj’s product in the absence of platform

entry is given by

CS = d2kj Q
S
kj −

d5kj

2

[
QS
kj

]2 − pSkjQS
kj. (70)

(70) implies that the inverse demand is given by:

pSkj = d2kj − d5kj Q
S
kj. (71)

(3) implies that:

pSkj =
Aj
bSj
− 1

bSj
QS
kj. (72)
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(71) and (72) imply that:

d2kj =
Aj
bSj
, and d5kj =

1

σΘkbSj
, (73)

where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk.
(70) implies that:

CS = QS
kj

[
d2kj −

d5kj

2
QS
kj

]
− pSkjQS

kj = QS
kj

[
d2kj − d5kj Q

S
kj

]
+
d5kj

2

[
QS
kj

]2 − pSkjQS
kj

= pSkjQ
S
kj +

d5kj

2

[
QS
kj

]2 − pSkjQS
kj =

d5kj

2

[
QS
kj

]2
=

1

2σΘkbSj

[
QS
kj

]2
, (74)

where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk.The first
equality in (74) reflects (71), and the last equality in (74) reflects (73).
Lemma 3 and (74) imply that consumer surplus when consuming Sj’s product in the

absence of platform entry is:

CS =
1

2σΘkbSj

[
σΘk ∆̃kj

4

]2

=
σΘk

2bSj

[
∆̃kj

4

]2

, (75)

where σ = 1 if Sj sells on both platforms and σ > 1 if Sj sells exclusively on Pk.
Proposition 1 implies that when P1 is the monopoly platform, then in equilibrium, each

seller competes against P1 under MP. P1 does not provide the exogenous boost σ under MP.
Therefore, (69) implies that consumer surplus under MP is:

CSM = Θ1 ς11 + Θ1 ς12, (76)

Since σ ∈

1 +
16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 , ς11+ ς12

1

2bS1

[
∆̃11

4

]2

+ 1

2bS2

[
∆̃12

4

]2

, Proposition 3 shows that
both P1 and P2 commit not to enter, and both sellers sell on P1. (75) implies that consumer
surplus is:

CS =
σΘ1

2bS1

[
∆̃11

4

]2

+
σΘ1

2bS2

[
∆̃12

4

]2

,

where σ > 1.
Observe that:

CS < CSM ⇔ σΘ1

2bS1

[
∆̃11

4

]2

+
σΘ1

2bS2

[
∆̃12

4

]2

< Θ1 ς11 + Θ1 ς12

⇔ σ <
ς11 + ς12

1
2bS1

[
∆̃11

4

]2

+ 1
2bS2

[
∆̃12

4

]2 . �
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Proposition 4 shows that when the incumbent is a stronger platform (i.e., Θ1

Θ2
∈
(√

φ1j, φ1j

)
where

√
φ1j > 1) but a weaker seller (i.e., cP1j > cP2j) than the entrant, increased plat-

form competition can reduce consumer surplus if the single-homing rewards offered by
platforms are high enough to promote single-homing (i.e., σ > 1 +

16Θ1[ 1−Ωj ][ ( 2+Ωj ) ∆11 ]2

Θ2[ 8+Ωj ]2[ ∆̃21 ]
2 ),

yet insuffi cient to offset the negative effects of decreased competition on consumers (i.e.,
σ < ς11+ ς12

1

2bS1

[
∆̃11

4

]2

+ 1

2bS2

[
∆̃12

4

]2 ).
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2 Seller entry/competition

In this section, I explore two market categories, labeled as g ∈ {1, 2}, where each category
features price competition among more than two third-party sellers (i.e., n > 2).

If a representative consumer purchases q ≡ (q1, ..., qn) at prices p ≡ (p1, ..., pn), his util-
ity is:

U(q,p) =
n∑

i= 1

di qi −
1

2

[
n∑

i= 1

(qi)
2 + 2 γ

∑
j 6= i

qi qj

]
−

n∑
i= 1

pi qi . (77)

Utility maximization entails:

U(q,p)

∂qi
= di − qi − γ

n∑
j= 1
j 6= i

qj − pi = 0 . (78)

(78) implies the inverse demand curve for firm i’s product is:

Pi(qi,q−i) = di − qi − γ
∑
j 6= i

qj . (79)

Let ci denote firm i’s constant unit cost of production (including the input price). Then
(79) implies that firm i’s profit is:

πi(qi,q−i) = [Pi(qi,q−i)− ci ] qi . (80)

Summing (78) for all firms provides:

n∑
i= 1

di −
n∑

i= 1

qi − γ
n∑

i= 1

n∑
j= 1
j 6= i

qj −
n∑

i= 1

pi = 0

⇔
n∑

i= 1

di −
n∑

i= 1

qi − γ [n− 1 ]

n∑
i= 1

qi −
n∑

i= 1

pi = 0

⇔ di − qi − pi +
n∑

j= 1
j 6= i

dj −
n∑

j= 1
j 6= i

qj − γ [n− 1 ] qi − γ [n− 1 ]
n∑

j= 1
j 6= i

qj −
n∑

j= 1
j 6= i

pj = 0 . (81)

(78) and (81) imply:

γ
n∑

j= 1
j 6= i

qj +
n∑

j= 1
j 6= i

dj −
n∑

j= 1
j 6= i

qj − γ [n− 1 ] qi − γ [n− 1 ]
n∑

j= 1
j 6= i

qj −
n∑

j= 1
j 6= i

pj = 0
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⇔ γ [n− 1 ] qi =

n∑
j= 1
j 6= i

( dj − pj )− [ 1 + γ (n− 2 ) ]
n∑

j= 1
j 6= i

qj . (82)

(78) and (82) imply that for i = 1, ..., n:

γ [n− 1 ] qi =

n∑
j= 1
j 6= i

( dj − pj )− [ 1 + γ (n− 2 ) ]
1

γ
[ di − qi − pi ]

⇔
[
γ (n− 1 )− 1 + γ (n− 2 )

γ

]
qi =

n∑
j= 1
j 6= i

( dj − pj )− 1 + γ [n− 2 ]

γ
[ di − pi ]

⇔
[
γ2 (n− 1 )− 1− γ (n− 2 )

γ

]
qi =

1

γ

γ n∑
j= 1
j 6= i

( dj − pj )− ( 1 + γ [n− 2 ] ) ( di − pi )



⇔ q∗i =

[ di − pi ] [ 1 + γ (n− 2 ) ]− γ
n∑

j= 1
j 6= i

( dj − pj )

[ 1− γ ] [ 1 + γ (n− 1 ) ]
. (83)

In the absence of platform entry.

Suppose third-party seller Sj sells on Platform Pk. If Pk does not enter seller market,
then Sj competes with the other n − 1 third-party sellers in the downstream market. (83)
imply that when Sj sells on Pk and Pk does not enter seller market, the initial demand for
Sj’s product is (j ∈ {1, 2, ..., n}):

qS−NEkj =

[
dj − pS−NEkj

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

. (84)

I define

∆̃kj ≡

[
dj − cSj

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= j

(
dh − cSh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

(85)

to be Sj’s "selling strength" on Pk in the absence of platform entry. (84) implies that ∆̃kj

represents consumers’demand for Sj’s product in the absence of platform entry when each
third-party seller prices its product at cost.

Assumption 2. Third-party sellers in category g ∈ {1, 2} have symmetrical selling strength
(i.e., for l 6= j, l, j ∈ {1, 2, ..., n}), dj − cSj = dl − cSl = dSg − cSg), and third-party sellers in
category 1 are stronger than those in category 2 (i.e., dS1 − cS1 > dS2 − cS2).
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Assumption 3. P1 is a stronger seller than P2 (i.e., d1 − cP1 > d2 − cP2 ).

Assumption 4. Platforms are stronger sellers than third-party sellers (i.e., d2 − cP2 >
dS1 − cS1).

(85) and Assumption 2 imply that the selling strength of Sj in category g, when selling
on Pk, is:

∆̃kjg =

[
dSg − cSg

]
[ 1 + γ (n− 2 ) ]− γ [n− 1 ]

(
dSg − cSg

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dSg − cSg

]
[ 1 + γ (n− 2 )− γ (n− 1 ) ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
=

[
dSg − cSg

]
[ 1− γ ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
=

dSg − cSg
1 + γ [n− 1 ]

.

(86)
Assumption 2 and (86) imply that for l 6= j, l, j ∈ {1, 2, ..., n}), and g ∈ {1, 2},

∆̃kjg = ∆̃k lg = ∆̃kg, ∆̃k1 > ∆̃k2, ∆̃1g = ∆̃2g. (87)

Assumptions 2, 3, and 4 imply that:

d1 − cP1 > d2 − cP2 > dS1 − cS1 > dS2 − cS2. (88)

Lemma 19. Suppose Assumption 2 holds. Further suppose Sj (j ∈ {1, 2, ..., n}), whose
product is in category g (g ∈ {1, 2}), sells on Pk (j, k ∈ {1, 2}) and Pk does not enter Sj’s
market. Given wkg, Sj’s equilibrium output (i.e., sales) (QS−NE

kj ) is
Θk[ 1+γ(n−2 ) ][ dS−cS−wNEkg ]

[ 1+γ(n−1 ) ][ 2+γ(n−3 ) ]
,

and Sj’s total profit is
Θk[ 1−γ ][ 1+γ(n−2 ) ][ dS−cS−wNEkg ]

2

[ 1+γ(n−1 ) ][ 2+γ(n−3 ) ]2
.

Proof. Suppose Sj (j ∈ {1, 2, ..., n}) whose product lies in category g (g ∈ {1, 2}) sells on Pk
(j, k ∈ {1, 2}) and Pk does not enter Sj’s market. (84) implies that Sj’s profit is:

πS−NEkj =
[
pS−NEkj − wNEkg − cSj

]
Θk q

S−NE
kj

(89)

=
[
pS−NEkj − wNEkg − cSj

]
Θk

[
dj − pS−NEkj

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

. (90)

(90) implies that Sj chooses pS−NEkj to maximize πS−NEkj :

∂πS−NEkj

∂pS−NEkj

= 0 ⇔

[
dj − pS−NEkj

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

−
[ 1 + γ (n− 2 ) ]

[
pS−NEkj − wNEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

= 0
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⇔
[
dj − pS−NEkj

]
[ 1 + γ (n− 2 ) ]−γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
= [ 1 + γ (n− 2 ) ]

[
pS−NEkj − wNEkg − cSj

]

⇔ [ 1 + γ (n− 2 ) ]
[
dj + wNEkg + cSj

]
− γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
= 2 pS−NEkj [ 1 + γ (n− 2 ) ]

⇔ pS−NEkj =
dj + wNEkg + cSj

2
−

γ
n∑

h= 1
h 6= j

(
dh − pS−NEkh

)
2 [ 1 + γ (n− 2 ) ]

.

(91)
(91) implies:

2 [ 1 + γ (n− 2 ) ] pS−NEkj = [ 1 + γ (n− 2 ) ]
[
dj + wNEkg + cSj

]
− γ

n∑
h= 1
h 6= j

dh + γ

n∑
h= 1
h 6= j

pS−NEkh

⇔ γ
n∑

h= 1
h 6= j

pS−NEkh = 2 [ 1 + γ (n− 2 ) ] pS−NEkj −[ 1 + γ (n− 2 ) ]
[
dj + wNEkg + cSj

]
+γ

n∑
h= 1
h 6= j

dh

⇔
n∑

h= 1
h 6= j

pS−NEkh =
[ 1 + γ (n− 2 ) ]

[
2 pS−NEkj − dj − wNEkg − cSj

]
γ

+
n∑

h= 1
h 6= j

dh. (92)

Summing (91) for all firms provides:

n∑
j= 1

pS−NEkj =

n∑
j= 1

(
dj + wNEkg + cSj

)
2

−

γ
n∑

j= 1

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
2 [ 1 + γ (n− 2 ) ]

⇔
n∑

j= 1

pS−NEkj =

nwNEkg +
n∑

j= 1

(
dj + cSj

)
2

−
γ [n− 1 ]

n∑
j= 1

(
dj − pS−NEkj

)
2 [ 1 + γ (n− 2 ) ]

⇔
n∑

j= 1

pS−NEkj −
γ [n− 1 ]

n∑
j= 1

pS−NEkj

2 [ 1 + γ (n− 2 ) ]
=

nwNEkg +
n∑

j= 1

(
dj + cSj

)
2

−
γ [n− 1 ]

n∑
j= 1

dj

2 [ 1 + γ (n− 2 ) ]

⇔
n∑

j= 1

pS−NEkj

{
1− γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

}

=

nwNEkg +
n∑

j= 1

cSj

2
+

[ 1 + γ (n− 2 ) ]
n∑

j= 1

dj − γ [n− 1 ]
n∑

j= 1

dj

2 [ 1 + γ (n− 2 ) ]
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⇔
n∑

j= 1

pS−NEkj

{
2 + 2 γ [n− 2 ] − γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

}

=

nwNEkg +
n∑

j= 1

cSj

2
+

[ 1 + γ (n− 2 )− γ (n− 1 ) ]
n∑

j= 1

dj

2 [ 1 + γ (n− 2 ) ]

⇔
n∑

j= 1

pS−NEkj

{
2 + γ [ 2 (n− 2 )− (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]

}
=

nwNEkg +
n∑

j= 1

cSj

2
+

[ 1− γ ]
n∑

j= 1

dj

2 [ 1 + γ (n− 2 ) ]

⇔
n∑

j= 1

pS−NEkj

2 + γ [n− 3 ]

1 + γ [n− 2 ]
= nwNEkg +

n∑
j= 1

cSj +

[ 1− γ ]
n∑

j= 1

dj

1 + γ [n− 2 ]

⇔
n∑

j= 1

pS−NEkj =

[ 1 + γ (n− 2 ) ]

[
nwNEkg +

n∑
j= 1

cSj

]
2 + γ [n− 3 ]

+

[ 1− γ ]
n∑

j= 1

dj

2 + γ [n− 3 ]

⇔ pS−NEkj +
n∑

h= 1
h 6= j

pS−NEkh =

[ 1 + γ (n− 2 ) ]

[
nwNEkg +

n∑
j= 1

cSj

]
2 + γ [n− 3 ]

+

[ 1− γ ]
n∑

j= 1

dj

2 + γ [n− 3 ]
. (93)

(92) and (93) imply that:

pS−NEkj +
[ 1 + γ (n− 2 ) ]

[
2 pS−NEkj − dj − wNEkg − cSj

]
γ

+
n∑

h= 1
h 6= j

dh

=

[ 1 + γ (n− 2 ) ]

[
nwNEkg +

n∑
j= 1

cSj

]
2 + γ [n− 3 ]

+

[ 1− γ ]
n∑

j= 1

dj

2 + γ [n− 3 ]

⇔ pS−NEkj +
2 pS−NEkj [ 1 + γ (n− 2 ) ]

γ

=

[ 1 + γ (n− 2 ) ]

[
nwNEkg +

n∑
j= 1

cSj

]
2 + γ [n− 3 ]

+

[ 1− γ ]
n∑

j= 1

dj

2 + γ [n− 3 ]
−

n∑
h= 1
h 6= j

dh+
[ 1 + γ (n− 2 ) ]

[
dj + wNEkg + cSj

]
γ

⇔ pS−NEkj

{
1 +

2 [ 1 + γ (n− 2 ) ]

γ

}

33



=
[ 1 + γ (n− 2 ) ] nwNEkg

2 + γ [n− 3 ]
+

[ 1 + γ (n− 2 ) ] wNEkg
γ

+

[ 1 + γ (n− 2 ) ]
n∑

j= 1

cSj

2 + γ [n− 3 ]

+

[ 1− γ ]
n∑

j= 1

dj

2 + γ [n− 3 ]
−

n∑
h= 1
h 6= j

dh +
[ 1 + γ (n− 2 ) ] dj

γ
+

[ 1 + γ (n− 2 ) ] cSj
γ

⇔ pS−NEkj

{
γ + 2 [ 1 + γ (n− 2 ) ]

γ

}

= wNEkg [ 1 + γ (n− 2 ) ]

[
n

2 + γ (n− 3 )
+

1

γ

]
+

[ 1 + γ (n− 2 ) ] cSj
2 + γ [n− 3 ]

+

[ 1 + γ (n− 2 ) ]
n∑

h= 1
h 6= j

cSh

2 + γ [n− 3 ]

+
[ 1− γ ] dj

2 + γ [n− 3 ]
+

[ 1− γ ]
n∑

h= 1
h 6= j

dh

2 + γ [n− 3 ]
−

n∑
h= 1
h 6= j

dh +
[ 1 + γ (n− 2 ) ] dj

γ
+

[ 1 + γ (n− 2 ) ] cSj
γ

⇔ pS−NEkj

2 + γ [ 2n− 3 ]

γ

= wNEkg [ 1 + γ (n− 2 ) ]

[
γ n+ 2 + γ (n− 3 )

γ [ 2 + γ (n− 3 ) ]

]
+ cSj [ 1 + γ (n− 2 ) ]

[
1

2 + γ (n− 3 )
+

1

γ

]

+

[ 1 + γ (n− 2 ) ]
n∑

h= 1
h 6= j

cSh

2 + γ [n− 3 ]
+dj

[
1− γ

2 + γ (n− 3 )
+

1 + γ (n− 2 )

γ

]
+

n∑
h= 1
h 6= j

dh

[
1− γ

2 + γ (n− 3 )
− 1

]

⇔ pS−NEkj

2 + γ [ 2n− 3 ]

γ

= wNEkg
[ 1 + γ (n− 2 ) ] [ 2 + γ ( 2n− 3 ) ]

γ [ 2 + γ (n− 3 ) ]
+cSj [ 1 + γ (n− 2 ) ]

γ + 2 + γ [n− 3 ]

γ [ 2 + γ (n− 3 ) ]

+
n∑

h= 1
h 6= j

cSh
[ 1 + γ (n− 2 ) ]

2 + γ [n− 3 ]
+dj

{
γ ( 1− γ )

γ [ 2 + γ (n− 3 ) ]
+

[ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

γ [ 2 + γ (n− 3 ) ]

}

+

n∑
h= 1
h 6= j

dh

[
1− γ − 2− γ (n− 3 )

2 + γ (n− 3 )

]

⇔ pS−NEkj

2 + γ [ 2n− 3 ]

γ
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= wNEkg
[ 1 + γ (n− 2 ) ] [ 2 + γ ( 2n− 3 ) ]

γ [ 2 + γ (n− 3 ) ]
+cSj

[ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

γ [ 2 + γ (n− 3 ) ]
+

n∑
h= 1
h 6= j

cSh
[ 1 + γ (n− 2 ) ]

2 + γ [n− 3 ]

+ dj
γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

γ [ 2 + γ (n− 3 ) ]
−

n∑
h= 1
h 6= j

dh
[ 1 + γ (n− 2 ) ]

2 + γ [n− 3 ]

⇔ pS−NEkj

2 + γ [ 2n− 3 ]

γ

=
1

γ [ 2 + γ (n− 3 ) ]

· { dj [ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] ]

+ [ 1 + γ (n− 2 ) ]

wNEkg [ 2 + γ ( 2n− 3 ) ] + cSj [ 2 + γ (n− 2 ) ] + γ

n∑
h= 1
h 6= j

(
cSh − dh

)


⇔ pS−NEkj =
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

· { dj [ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] ]

+ [ 1 + γ (n− 2 ) ]

wNEkg [ 2 + γ ( 2n− 3 ) ] + cSj [ 2 + γ (n− 2 ) ] + γ
n∑

h= 1
h 6= j

(
cSh − dh

)
 .
(94)

(92) implies that:

n∑
h= 1
h 6= j

pS−NEkh =
2 [ 1 + γ (n− 2 ) ]

γ
pS−NEkj −

[ 1 + γ (n− 2 ) ]
[
dj + wNEkg + cSj

]
γ

+
n∑

h= 1
h 6= j

dh

⇔
n∑

h= 1
h 6= j

dh −
n∑

h= 1
h 6= j

pS−NEkh =
[ 1 + γ (n− 2 ) ]

[
dj + wNEkg + cSj

]
γ

− 2 [ 1 + γ (n− 2 ) ]

γ
pS−NEkj

⇔ γ

n∑
h= 1
h 6= j

(
dh − pS−NEkh

)
= [ 1 + γ (n− 2 ) ]

[
dj + wNEkg + cSj

]
− 2 [ 1 + γ (n− 2 ) ] pS−NEkj

⇔ γ
n∑

h= 1
h 6= j

(
dh − pS−NEkh

)
= [ 1 + γ (n− 2 ) ]

[
wNEkg + cSj + dj − 2 pS−NEkj

]
.

(95)
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(84) and (95) imply that:

qS−NEkj =

[
dj − pS−NEkj

]
[ 1 + γ (n− 2 ) ]− [ 1 + γ (n− 2 ) ]

[
wNEkg + cSj + dj − 2 pS−NEkj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
1 + γ [n− 2 ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]

[
dj − pS−NEkj −

(
wNEkg + cSj + dj − 2 pS−NEkj

) ]
=

1 + γ [n− 2 ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]

[
pS−NEkj − wNEkg − cSj

]
. (96)

(96) implies that:

pS−NEkj − wNEkg − cSj =
[ 1− γ ] [ 1 + γ (n− 1 ) ]

1 + γ [n− 2 ]
qS−NEkj . (97)

(90) and (97) imply that:

πS−NEkj =
Θk [ 1− γ ] [ 1 + γ (n− 1 ) ]

1 + γ [n− 2 ]

[
qS−NEkj

]2
. (98)

(94) implies that:

pS−NEkj −wNEkg −cSj

=
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

· { dj [ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] ]

+ [ 1 + γ (n− 2 ) ]

wNEkg [ 2 + γ ( 2n− 3 ) ] + cSj [ 2 + γ (n− 2 ) ] + γ
n∑

h= 1
h 6= j

(
cSh − dh

)
− wNEkg [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]− cSj [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

}
=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·

 dj { γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] }+ [ 1 + γ (n− 2 ) ] γ
n∑

h= 1
h 6= j

(
cSh − dh

)
+ wNEkg [ 1 + γ (n− 2 ) ] [ 2 + γ ( 2n− 3 ) ] + cSj [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

− wNEkg [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]− cSj [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]
}
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=
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·

 dj [ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] ] + [ 1 + γ (n− 2 ) ] γ
n∑

h= 1
h 6= j

(
cSh − dh

)

+ wNEkg { 1 + γ (n− 2 )− [ 2 + γ (n− 3 ) ] } [ 2 + γ ( 2n− 3 ) ]

+ cSj {[ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]}
}
.
(99)

Observe that:

1 + γ (n− 2 )− [ 2 + γ (n− 3 ) ] = γ [n− 2− (n− 3 ) ]− 1 = γ − 1;

[ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− [ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

= [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 + 1 ) ]− [ 1 + γ (n− 2 ) + 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

= [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) + γ ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

− [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

= [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] + γ [ 1 + γ (n− 2 ) ]

− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]− [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

= γ [ 1 + γ (n− 2 ) ]− [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

= γ [ 1 + γ (n− 2 ) ]− [ 1 + γ (n− 2 + 1 ) ] [ 2 + γ (n− 3 ) ]

= γ [ 1 + γ (n− 2 ) ]− [ 1 + γ (n− 2 ) + γ ] [ 2 + γ (n− 3 ) ]

= γ [ 1 + γ (n− 2 ) ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]− γ [ 2 + γ (n− 3 ) ]

= γ { 1 + γ (n− 2 )− [ 2 + γ (n− 3 ) ] } − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

= γ [ 1 + γ (n− 2 )− 2− γ (n− 3 ) ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

= γ { γ [n− 2− (n− 3 ) ]− 1 } − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

= γ [ γ − 1 ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ]

= − γ [ 1− γ ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] .
(100)

(99) and (100) imply that:

pS−NEkj −wNEkg −cSj =
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]
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·

 dj { γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] }+ [ 1 + γ (n− 2 ) ] γ

n∑
h= 1
h 6= j

(
cSh − dh

)

+ wNEkg [ γ − 1 ] [ 2 + γ ( 2n− 3 ) ]

+ cSj {−γ [ 1− γ ]− [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] }
}

=
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]
{ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 3 ) ] }

+ [ 1 + γ (n− 2 ) ] γ
n∑

h= 1
h 6= j

(
cSh − dh

)
− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]


=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]
{ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 1 + 1 + γ (n− 2− 1 ) ] }

+ [ 1 + γ (n− 2 ) ] γ
n∑

h= 1
h 6= j

(
cSh − dh

)
− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]


=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]
{ γ [ 1− γ ] + [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) + 1− γ ] }

+ [ 1 + γ (n− 2 ) ] γ

n∑
h= 1
h 6= j

(
cSh − dh

)
− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]


=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
] {

γ [ 1− γ ] + [ 1− γ ] [ 1 + γ (n− 2 ) ] + [ 1 + γ (n− 2 ) ]2
}

+ [ 1 + γ (n− 2 ) ] γ

n∑
h= 1
h 6= j

(
cSh − dh

)
− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]


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=
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]

[ 1− γ ] [ 1 + γ (n− 2 ) + γ ] +
[
dj − cSj

]
[ 1 + γ (n− 2 ) ]2

− [ 1 + γ (n− 2 ) ] γ

n∑
h= 1
h 6= j

(
dh − cSh

)
− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]


=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]

[ 1− γ ] [ 1 + γ (n− 1 ) ]− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]

+
[
dj − cSj

]
[ 1 + γ (n− 2 ) ]2 − [ 1 + γ (n− 2 ) ] γ

n∑
h= 1
h 6= j

(
dh − cSh

)
=

1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]

[ 1− γ ] [ 1 + γ (n− 1 ) ]− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]

+ [ 1 + γ (n− 2 ) ]

 [ dj − cSj ] [ 1 + γ (n− 2 ) ]− γ
n∑

h= 1
h 6= j

(
dh − cSh

)
 . (101)

(85) implies:

[
dj − cSj

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= j

(
dh − cSh

)
= ∆̃kj [ 1− γ ] [ 1 + γ (n− 1 ) ] . (102)

(101) and (102) imply that:

pS−NEkj −wNEkg −cSj =
1

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]

[ 1− γ ] [ 1 + γ (n− 1 ) ]− wNEkg [ 1− γ ] [ 2 + γ ( 2n− 3 ) ]

+ ∆̃kj [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]
}
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=
1− γ

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

·
{ [

dj − cSj
]

[ 1 + γ (n− 1 ) ]− wNEkg [ 2 + γ ( 2n− 3 ) ]

+ ∆̃kj [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]
}

=
[ 1− γ ]

{ [
dj − cSj

]
[ 1 + γ (n− 1 ) ] + ∆̃kj [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

}
[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

−
wNEkg [ 1− γ ]

2 + γ [n− 3 ]
. (103)

Assumption 2, (103), and (86) imply that:

pS−NEkj −wNEkg −cSj =
[ 1− γ ]

{ [
dS − cS

]
[ 1 + γ (n− 1 ) ] + dS−cS

1+γ[n−1 ]
[ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

}
[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

−
wNEkg [ 1− γ ]

2 + γ [n− 3 ]

=
[ 1− γ ]

{ [
dS − cS

]
[ 1 + γ (n− 1 ) ] +

[
dS − cS

]
[ 1 + γ (n− 2 ) ]

}
[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]

−
wNEkg [ 1− γ ]

2 + γ [n− 3 ]

=
[ 1− γ ]

[
dS − cS

]
[ 2 + γ ( 2n− 3 ) ]

[ 2 + γ ( 2n− 3 ) ] [ 2 + γ (n− 3 ) ]
−

wNEkg [ 1− γ ]

2 + γ [n− 3 ]

=
[ 1− γ ]

[
dS − cS

]
− wNEkg [ 1− γ ]

2 + γ [n− 3 ]
=

[ 1− γ ]
[
dS − cS − wNEkg

]
2 + γ [n− 3 ]

. (104)

(96) and (104) imply that:

qS−NEkj =
1 + γ [n− 2 ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]

[ 1− γ ]
[
dS − cS − wNEkg

]
2 + γ [n− 3 ]

=
[ 1 + γ (n− 2 ) ]

[
dS − cS − wNEkg

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

. (105)

(98) and (105) imply that:

πS−NEkj =
Θk [ 1− γ ] [ 1 + γ (n− 1 ) ]

1 + γ [n− 2 ]

[ 1 + γ (n− 2 ) ]2
[
dS − cS − wNEkg

]2
[ 1 + γ (n− 1 ) ]2 [ 2 + γ (n− 3 ) ]2
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=
Θk [ 1− γ ] [ 1 + γ (n− 2 ) ]

[
dS − cS − wNEkg

]2
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]2

. � (106)

Lemma 20. Suppose Assumption 2 holds. Further suppose n > 1 third-party sellers in
category g (g ∈ {1, 2}) sell on Pk (k ∈ {1, 2}) and Pk does not enter seller market in
category g. Then Pk’s profit-maximizing commission for each third-party seller in category
g is wNEkg = dS−cS

2
.

Proof. Lemma 19 implies that Pk chooses wNEkg to:

Maximize ΠP−NE
k = wNEkg Θk

n∑
j= 1

qS−NEkj +Πkl

(107)

= wNEkg Θk

n∑
j= 1

[ 1 + γ (n− 2 ) ]
[
dS − cS − wNEkg

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

+ Πkl

= wNEkg Θk

n [ 1 + γ (n− 2 ) ]
[
dS − cS − wNEkg

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

+ Πkl

⇒ ∂Πk

∂wNEkg
= 0

⇔
n [ 1 + γ (n− 2 ) ]

[
dS − cS − wNEkg

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

− wNEkg
n [ 1 + γ (n− 2 ) ]

[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]
= 0

⇔
n [ 1 + γ (n− 2 ) ]

[
dS − cS

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

= wNEkg
2n [ 1 + γ (n− 2 ) ]

[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

⇔ wNEkg =
dS − cS

2
,

(108)
where Πkl is the profit that Pk secures from sellers in category l (l ∈ {1, 2}, l 6= g), Πkl > 0
if selllers in category l sell on Pk, and Πkl = 0 if selllers in category l do not on Pk. �

Lemma 21. Suppose Assumption 2 holds. Further suppose n > 1 third-party sellers in
category g (g ∈ {1, 2}) sell on Pk (k ∈ {1, 2}) and Pk does not enter seller market in
category g. Then each seller’s (Sj) equilibrium output (QS−NE

kj ) is Θk∆̃kj [ 1+γ(n−2 ) ]

2[ 2+γ(n−3 ) ]
, Sj’s

profit is
Θk[ 1−γ ][ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]

2

4[ 2+γ(n−3 ) ]2
, and Pk’s profit is

Θkn[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]
2

4[ 2+γ(n−3 ) ]
.

Proof. Lemmas 19 and 20 imply that consumers’initial demand for product j is:

qS−NEkj =
[ 1 + γ (n− 2 ) ]

[
dS − cS − dS−cS

2

]
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

=
[ 1 + γ (n− 2 ) ]

[
dS − cS

]
2 [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

=
∆̃kj [ 1 + γ (n− 2 ) ]

2 [ 2 + γ (n− 3 ) ]
. (109)
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The last equality in (109) reflects (86).
Lemmas 19 and 20 imply that Sj’s profit is:

πS−NEkj =
Θk [ 1− γ ] [ 1 + γ (n− 2 ) ]

[
dS − cS − dS−cS

2

]2

[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]2

=
Θk [ 1− γ ] [ 1 + γ (n− 2 ) ]

[
dS − cS

]2
4 [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]2

=
Θk [ 1− γ ] [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 1 ) ]

[
∆̃kj

]2

4 [ 2 + γ (n− 3 ) ]2
. (110)

(110) reflects (86).
Lemma 20 and (109) imply that Pk’s profit from charging commissions from sellers in

category g is:

Πk = wNEkg Θk

n∑
j= 1

qS−NEkj =
dS − cS

2
Θk

n∑
j= 1

[ 1 + γ (n− 2 ) ]
[
dS − cS

]
2 [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

=
dS − cS

2
Θk

n [ 1 + γ (n− 2 ) ]
[
dS − cS

]
2 [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

=
Θkn [ 1 + γ (n− 2 ) ]

[
dS − cS

]2
4 [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

=
Θkn [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 1 ) ]

[
∆̃kj

]2

4 [ 2 + γ (n− 3 ) ]
.

(111)
The last equality in (111) reflects (86). �

In the presence of platform entry.

If Pk enters Sj’s market, (83) implies that the initial demand for Sj’s product when Sj
sells on Pk is:

qS−Ekj =

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − pP−Ek

]
− γ

n∑
h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

, (112)

and the initial demand for Pk’s product when Pk imitates category g product is:

qP−Ek =

[
dk − pP−Ek

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

. (113)
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Define:

∆kj ≡

[
dj − cSj

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − cPk

]
− γ

n∑
h= 1
h 6= k
h 6= j

(
dh − cSh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

(114)

to be Sj’s "selling strength" on Pk when Pk enters Sj’s market, and

∆kj ≡

[
dk − cPk

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − cSh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

. (115)

to be Pk’s "selling strength" when Pk competes with third-party sellers in seller market.
Assumption 2 and (114) imply that the selling strength of Sj in category g, when com-

peting with Pk, is:

∆kjg =

[
dSg − cSg

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − cPk

]
− γ

n∑
h= 1
h 6= k
h 6= j

(
dSg − cSg

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dSg − cSg

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − cPk

]
− γ [n− 2 ]

[
dSg − cSg

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dSg − cSg

]
[ 1 + γ (n− 2 )− γ (n− 2 ) ]− γ

[
dk − cPk

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
dSg − cSg − γ

[
dk − cPk

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

.

(116)
Assumption 2 and (115) imply that the selling strength of Pk, when competing with Sj

in category g, is:

∆kjg =

[
dk − cPk

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dSg − cSg

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − cPk

]
[ 1 + γ (n− 2 ) ]− γ [n− 1 ]

[
dSg − cSg

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

. (117)

Assumptions 2 and 3, (116), and (117) imply that for j 6= l, j, l ∈ {1, 2, ..., n}, k, g ∈
{1, 2}:

∆kjg = ∆k lg = ∆kg, ∆k1 > ∆k2, ∆1g < ∆2g; (118)

∆kjg = ∆k lg = ∆kg, ∆k1 < ∆k2, ∆1g > ∆2g. (119)

Lemma 22. Suppose Assumption 2 holds. Further suppose Sj (j ∈ {1, 2, ..., n − 1}) in
category g (g ∈ {1, 2}) sells on Pk (k ∈ {1, 2}) and Pk enters Sj’s market. Given wEkg, Sj’s
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equilibrium output (i.e., sales) (QS−E
kj ) is

Θk[ 1+γ(n−2 ) ]{∆kj2[ 1+γ(n−2 ) ]+∆kjγ−2wEkg}
f(r,n)

, and Pk’s

equilibrium output (i.e., sales) (qP−Ek ) is
[ 1+γ(n−2 ) ]{∆kjγ[n−1]+∆kj [2+γ(n−2 ) ]}−wEkgγ[n−1 ]

f(r,n)
.

Proof. (112) implies that Sj’s profit is:

πS−Ekj =
[
pS−Ekj − wEkg − cSj

]
Θk q

S−E
kj . (120)

(113) implies that Pk’s profit is:

ΠP−E
k =

[
pP−Ek − cPk

]
Θk q

P−E
k − F + wEkg Θk

n∑
j= 1
j 6= k

qS−Ekj + Πkl, (121)

where Πkl is the profit that Pk secures from sellers in category l (l ∈ {1, 2}, l 6= g), Πkl > 0
if sellers in category l sell on Pk, and Πkl = 0 if they do not sell on Pk.
(112), (113), and (121) imply that Pk chooses its price pPkj to maximize Πk:

∂ΠP−E
k

∂pP−Ek

= 0 ⇔ qP−Ek +
[
pP−Ek − cPk

] ∂qP−Ek

∂pP−Ek

+ wEkg

n∑
j= 1
j 6= k

∂qS−Ekj

∂pP−Ek

= 0

⇔

[
dk − pP−Ek

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

−
[
pP−Ek − cPk

]
[ 1 + γ (n− 2 ) ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
+ wEkg

γ [n− 1 ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
= 0

⇔
[
dk − pP−Ek

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
−
[
pP−Ek − cPk

]
[ 1 + γ (n− 2 ) ] + wEkg γ [n− 1 ] = 0

⇔ 2 pP−Ek [ 1 + γ (n− 2 ) ]

=
[
dk + cPk

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
+ wEkg γ [n− 1 ]

⇔ pP−Ek =
dk + cPk

2
−

γ
n∑

h= 1
h 6= k

(
dh − pS−Ekh

)
2 [ 1 + γ (n− 2 ) ]

+
wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
. (122)
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⇔ pP−Ek =

[ 1 + γ (n− 2 ) ]
[
dk + cPk

]
− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

=

[ 1 + γ (n− 2 ) ]
[
dk − cPk + 2cPk

]
− γ

n∑
h= 1
h 6= k

(
dh − cSh + cSh − pS−Ekh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

=
1

2 [ 1 + γ (n− 2 ) ]

{
[ 1 + γ (n− 2 ) ]

[
dk − cPk

]
+2cPk [ 1 + γ (n− 2 ) ]

− γ
n∑

h= 1
h 6= k

(
dh − cSh

)
− γ

n∑
h= 1
h 6= k

(
cSh − pS−Ekh

)
+ wEkg γ [n− 1 ]

}

=
1

2 [ 1 + γ (n− 2 ) ]

{
[ 1 + γ (n− 2 ) ]

[
dk − cPk

]
−γ

n∑
h= 1
h 6= k

(
dh − cSh

)

+ 2cPk [ 1 + γ (n− 2 ) ] + γ
n∑

h= 1
h 6= k

(
pS−Ekh − cSh

)
+wEkg γ [n− 1 ]

}
. (123)

(115) and (123) imply that:

pP−Ek =

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ
n∑

h= 1
h 6= k

(
pS−Ekh − cSh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
+ cPk

⇔ pP−Ek −cPk =

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ
n∑

h= 1
h 6= k

(
pS−Ekh − cSh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
(124)

(112) and (120) imply that Sj chooses its price pSkj to maximize π
S−E
kj :

∂πS−Ekj

∂pS−Ekj

= 0 ⇔ qS−Ekj +
[
pS−Ekj − wEkg − cSj

] ∂qS−Ekj

∂pS−Ekj

= 0

⇔

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − pP−Ek

]
− γ

n∑
h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]
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−
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
= 0

⇔
[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]−γ

[
dk − pP−Ek

]
−γ

n∑
h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)

=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ] (125)

⇔
[
dj + wEkg + cSj

]
[ 1 + γ (n− 2 ) ]−γ

[
dk − pP−Ek

]
−γ

n∑
h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)

= 2 pS−Ekj [ 1 + γ (n− 2 ) ]

⇔ pS−Ekj =
dj + wEkg + cSj

2
− γ

2 [ 1 + γ (n− 2 ) ]

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)


(126)

⇔ pS−Ekj =

[ 1 + γ (n− 2 ) ]
[
dj + wEkg + cSj

]
− γ

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
2 [ 1 + γ (n− 2 ) ]

=

[ 1 + γ (n− 2 ) ]
[
dj − cSj + wEkg + 2cSj

]
− γ

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
2 [ 1 + γ (n− 2 ) ]

=

[1 + γ (n− 2 )]
[
dj − cSj

]
− γ

dk − cPk + cPk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − cSh + cSh − pS−Ekh

)
2 [ 1 + γ (n− 2 ) ]

+
wEkg + 2cSj

2
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=
1

2 [ 1 + γ (n− 2 ) ]

{
[1 + γ (n− 2 )]

[
dj − cSj

]
−γ

dk − cPk +

n∑
h= 1
h 6= k
h 6= j

(
dh − cSh

)


− γ

cPk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
cSh − pS−Ekh

)

}

+
wEkg
2

+ cSj

=
1

2 [ 1 + γ (n− 2 ) ]

{
[1 + γ (n− 2 )]

[
dS − cS

]
−γ

dk − cPk +

n∑
h= 1
h 6= k
h 6= j

(
dS − cS

)


+ γ

pP−Ek − cPk +
n∑

h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)

}

+
wEkg
2

+ cSj (127)

=
1

2 [ 1 + γ (n− 2 ) ]

{
[1 + γ (n− 2 )]

[
dS − cS

]
−γ
[
dk − cPk + (n− 2 )

(
dS − cS

)]

+ γ

pP−Ek − cPk +
n∑

h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)

}

+
wEkg
2

+ cSj

=
1

2 [ 1 + γ (n− 2 ) ]

{
dS−cS−γ

[
dk − cPk

]

+ γ

pP−Ek − cPk +

n∑
h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)

}

+
wEkg
2

+ cSj . (128)

(127) reflects Assumption 2.
(116) and (128) imply that:

pS−Ekj =

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ

pP−Ek − cPk +
n∑

h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)
2 [ 1 + γ (n− 2 ) ]

+
wEkg
2

+ cSj
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⇔ pS−Ekj −cSj

=

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ

pP−Ek − cPk +
n∑

h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)
2 [ 1 + γ (n− 2 ) ]

+
wEkg
2

(129)

Summing (129) for all third-party sellers provides:

n∑
j= 1
j 6= k

(
pS−Ekj − cSj

)

=
[ 1− γ ] [ 1 + γ (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

∆kj+
γ [n− 1 ]

[
pP−Ek − cPk

]
2 [ 1 + γ (n− 2 ) ]

+
wEkg [n− 1 ]

2

+
γ

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

n∑
h= 1
h 6= k
h 6= j

(
pS−Ekh − cSh

)

⇔
n∑

j= 1
j 6= k

(
pS−Ekj − cSj

)

=
[ 1− γ ] [ 1 + γ (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

∆kj+
γ [n− 1 ]

[
pP−Ek − cPk

]
2 [ 1 + γ (n− 2 ) ]

+
wEkg [n− 1 ]

2

+
γ [n− 2 ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

(
pS−Ekj − cSj

)

⇔
{

1− γ [n− 2 ]

2 [ 1 + γ (n− 2 ) ]

} n∑
j= 1
j 6= k

(
pS−Ekj − cSj

)

=
[ 1− γ ] [ 1 + γ (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

∆kj+
γ [n− 1 ]

[
pP−Ek − cPk

]
2 [ 1 + γ (n− 2 ) ]

+
wEkg [n− 1 ]

2

⇔ 2 + γ [n− 2 ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

(
pS−Ekj − cSj

)
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=
[ 1− γ ] [ 1 + γ (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]

n∑
j= 1
j 6= k

∆kj +
γ [n− 1 ]

[
pP−Ek − cPk

]
2 [ 1 + γ (n− 2 ) ]

+
wEkg [n− 1 ]

2

⇔
n∑

j= 1
j 6= k

(
pS−Ekj − cSj

)

=

[ 1− γ ] [ 1 + γ (n− 1 ) ]
n∑

j= 1
j 6= k

∆kj + γ [n− 1 ]
[
pP−Ek − cPk

]
+ wEkg [n− 1 ] [ 1 + γ (n− 2 ) ]

2 + γ [n− 2 ]
.

(130)
(124) and (130) imply that:

pP−Ek −cPk =
∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
+

γ

2 [ 1 + γ (n− 2 ) ]

n∑
h= 1
h 6= k

(
pS−Ekh − cSh

)

⇔ pP−Ek −cPk =
∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

+γ

[ 1− γ ] [ 1 + γ (n− 1 ) ]
n∑

j= 1
j 6= k

∆kj + γ [n− 1 ]
[
pP−Ek − cPk

]
+ wEkg [n− 1 ] [ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]

⇔
{

1− γ2 [n− 1 ]

2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]

}[
pP−Ek − cPk

]
=

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

+

γ [ 1− γ ] [ 1 + γ (n− 1 ) ]
n∑

j= 1
j 6= k

∆kj + γwEkg [n− 1 ] [ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]

⇔ 2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]− γ2 [n− 1 ]

2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]

[
pP−Ek − cPk

]
=

∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

+

γ [ 1− γ ] [ 1 + γ (n− 1 ) ]
n∑

j= 1
j 6= k

∆kj + γwEkg [n− 1 ] [ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]

⇔ f (r, n)
[
pP−Ek − cPk

]
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= ∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )] + wEkg γ [n− 1 ] [2 + γ (n− 2 )]

+ γ [ 1− γ ] [ 1 + γ (n− 1 ) ]

n∑
j= 1
j 6= k

∆kj + γwEkg [n− 1 ] [ 1 + γ (n− 2 ) ] (131)

⇔ f (r, n)
[
pP−Ek − cPk

]
= ∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

+ γ [ 1− γ ] [ 1 + γ (n− 1 ) ]

n∑
j= 1
j 6= k

∆kj + wEkg γ [n− 1 ] [2 + γ (n− 2 ) + 1 + γ (n− 2 ) ]

⇔ f (r, n)
[
pP−Ek − cPk

]
= [ 1− γ ] [ 1 + γ (n− 1 ) ]

[2 + γ (n− 2 )] ∆kj + γ
n∑

j= 1
j 6= k

∆kj


+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

⇔ pP−Ek −cPk

=

[ 1− γ ] [ 1 + γ (n− 1 ) ]

[2 + γ (n− 2 )] ∆kj + γ
n∑

j= 1
j 6= k

∆kj

+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

f (r, n)

⇔ pP−Ek −cPk

=
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

f (r, n)
.

(132)
(131) reflects (5). (132) reflcets ∆kj = ∆kh for ∀j, h ∈ {1, 2, ..., n}, j 6= k, and h 6= k from
(116).
(125) implies that:

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]−γ

[
dk − pP−Ek

]
−γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
+γ

[
dj − pS−Ekj

]

=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

⇔
[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) + γ ]−γ

[
dk − pP−Ek

]
−γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]
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⇔
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ]−γ

[
dk − pP−Ek

]
−γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

⇔
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ]− γ

[
dk − pP−Ek

]
−
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

= γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
(133)

(122) and (133) imply that:

pP−Ek =
dk + cPk

2
+

wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]

−
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ]− γ

[
dk − pP−Ek

]
−
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

⇔ pP−Ek =
dk + cPk

2
+
wEkg γ [n− 1 ]− wEkg [ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

+
−
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ] + γ

[
dk − pP−Ek

]
+
[
pS−Ekj − cSj

]
[ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

⇔ pP−Ek =
dk + cPk

2
+
wEkg {γ [n− 1 ]− [ 1 + γ (n− 2 ) ]}

2 [ 1 + γ (n− 2 ) ]

+
−
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ] + γ

[
dk − pP−Ek

]
+
[
pS−Ekj − dj + dj − cSj

]
[ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

⇔ pP−Ek =
dk + cPk

2
+
dj − cSj

2
+

wEkg [γ − 1 ]

2 [ 1 + γ (n− 2 ) ]

+
−
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ] + γ

[
dk − pP−Ek

]
+
[
pS−Ekj − dj

]
[ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

⇔ pP−Ek =
dk + cPk

2
+
dj − cSj

2
+

wEkg [γ − 1 ]

2 [ 1 + γ (n− 2 ) ]

+
−
[
dj − pS−Ekj

]
[ 1 + γ (n− 1 ) ] + γ

[
dk − pP−Ek

]
−
[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

⇔ pP−Ek −dk+dk =
dk + cPk

2
+
dj − cSj

2

+
wEkg [γ − 1 ]−

[
dj − pS−Ekj

]
[ 2 + γ ( 2n− 3 ) ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]
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⇔ pP−Ek −dk =
−dk + cPk

2
+
dj − cSj

2

+
wEkg [γ − 1 ]−

[
dj − pS−Ekj

]
[ 2 + γ ( 2n− 3 ) ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]

⇔ 0 =
dj − cSj

2
− dk − c

P
k

2
+dk−pP−Ek

+
wEkg [γ − 1 ]−

[
dj − pS−Ekj

]
[ 2 + γ ( 2n− 3 ) ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]

⇔ 0 =
dj − cSj

2
− dk − c

P
k

2
+dk−pP−Ek

+
wEkg [γ − 1 ]−

[
dj − cSj + cSj − pS−Ekj

]
[ 2 + γ ( 2n− 3 ) ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]

⇔ 0 =
dS − cS

2
−
[
dS − cS

]
[ 2 + γ ( 2n− 3 ) ]

2 [ 1 + γ (n− 2 ) ]
− dk − cPk

2
+dk−pP−Ek

+
wEkg [γ − 1 ] +

[
pS−Ekj − cSj

]
[ 2 + γ ( 2n− 3 ) ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]

(134)

⇔
[
pS−Ekj − cSj

]
[ 2 + γ ( 2n− 3 ) ]

2 [ 1 + γ (n− 2 ) ]
= − dS − cS

2
+

[
dS − cS

]
[ 2 + γ ( 2n− 3 ) ]

2 [ 1 + γ (n− 2 ) ]

+
dk − cPk

2
−
[
dk − pP−Ek

]
−
wEkg [γ − 1 ] + γ

[
dk − pP−Ek

]
2 [ 1 + γ (n− 2 ) ]

. (135)

(134) reflects Assumption 2. (135) implies ∀j, h ∈ {1, 2, ..., n}, j 6= k, and h 6= k:

pS−Ekj − cSj = pS−Ekh − cSh . (136)

(125) implies that:[
dj − cSj + cSj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]− γ

[
dk − cPk + cPk − pP−Ek

]
−γ

n∑
h= 1
h 6= k
h 6= j

(
dh − cSh + cSh − pS−Ekh

)
=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

⇔
[
dj − cSj

]
[ 1 + γ (n− 2 ) ]−

[
pS−Ekj − cSj

]
[ 1 + γ (n− 2 ) ]−γ

[
dk − cPk

]
+γ

[
pP−Ek − cPk

]
−γ

n∑
h= 1
h 6= k
h 6= j

(
dh − cSh

)
+ γ

n∑
h= 1
h 6= k
h 6= j

[
pS−Ekh − cSh

]
=
[
pS−Ekj − wEkg − cSj

]
[ 1 + γ (n− 2 ) ]

⇔
[
dS − cS

]
[ 1 + γ (n− 2 ) ]−

[
pS−Ekj − cSj

]
[ 1 + γ (n− 2 ) ]−γ

[
dk − cPk

]
+γ

[
pP−Ek − cPk

]
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−γ [n− 2 ]
[
dS − cS

]
+γ

n∑
h= 1
h 6= k
h 6= j

[
pS−Ekh − cSh

]
=
[
pS−Ekj − cSj

]
[ 1 + γ (n− 2 ) ]−wEkg [ 1 + γ (n− 2 ) ]

(137)
⇔

[
dS − cS

]
[ 1 + γ (n− 2 ) ]−γ [n− 2 ]

[
dS − cS

]
−γ
[
dk − cPk

]
−2
[
pS−Ekj − cSj

]
[ 1 + γ (n− 2 ) ]

+γ
[
pP−Ek − cPk

]
+ γ [n− 2 ]

[
pS−Ekj − cSj

]
= − wEkg [ 1 + γ (n− 2 ) ] (138)

⇔ dS−cS −γ
[
dk − cPk

]
−
[
pS−Ekj − cSj

]
[ 2 + 2γ (n− 2 )− γ [n− 2 ] ]+γ

[
pP−Ek − cPk

]
= − wEkg [ 1 + γ (n− 2 ) ]

⇔ dS−cS −γ
[
dk − cPk

]
−
[
pS−Ekj − cSj

]
[ 2 + γ [n− 2 ] ]+γ

[
pP−Ek − cPk

]
= − wEkg [ 1 + γ (n− 2 ) ] (139)

(137) relfects Assumption 2. (138) reflects (136).
(124) and (136) imply that:

pP−Ek − cPk =
∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ [n− 1 ]

(
pS−Ekh − cSh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
(140)

(139) and (140) imply that:

dS − cS − γ
[
dk − cPk

]
−
[
pS−Ekj − cSj

]
[ 2 + γ (n− 2 ) ] + wEkg [ 1 + γ (n− 2 ) ]

+γ
∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ] + γ [n− 1 ]

(
pS−Ekh − cSh

)
+ wEkg γ [n− 1 ]

2 [ 1 + γ (n− 2 ) ]
= 0

⇔ ∆kj [ 1− γ ] [ 1 + γ (n− 1 ) ]+
∆kjγ [ 1− γ ] [ 1 + γ (n− 1 ) ]

2 [ 1 + γ (n− 2 ) ]
+wEkg

[
γ2 (n− 1 )

2 [ 1 + γ (n− 2 ) ]
+ 1 + γ (n− 2 )

]
=
[
pS−Ekj − cSj

] [
2 + γ (n− 2 )− γ2 (n− 1 )

2 [ 1 + γ (n− 2 ) ]

]
(141)

⇔ [ 1− γ ] [ 1 + γ (n− 1 ) ]
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

2 [ 1 + γ (n− 2 ) ]

+wEkg

[
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

2 [ 1 + γ (n− 2 ) ]

]
=
[
pS−Ekj − cSj

] [ 2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]− γ2 (n− 1 )

2 [ 1 + γ (n− 2 ) ]

]

⇔ [ 1− γ ] [ 1 + γ (n− 1 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ
}

+wEkg
{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

}
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=
[
pS−Ekj − cSj

] {
2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 )]− γ2 (n− 1 )

}
⇔ [ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
+wEkg

{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

}
=
[
pS−Ekj − cSj

]
f (r, n)

(142)

⇔ pS−Ekj −cSj =
1

f (r, n)

{
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
+ wEkg

{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

}}
. (143)

(141) reflects (116). (142) reflects (5).
(126) implies that:

dj−pS−Ekj =
dj − wEkg − cSj

2
+

γ

2 [ 1 + γ (n− 2 ) ]

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
 . (144)

(144) implies that:

γ

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)


= 2 [ 1 + γ (n− 2 ) ]
[
dj − pS−Ekj

]
− [ 1 + γ (n− 2 ) ]

[
dj − wEkg − cSj

]
. (145)

(112) and (145) imply that:

qS−Ekj =

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]− γ

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]−

{
2 [ 1 + γ (n− 2 ) ]

[
dj − pS−Ekj

]
− [ 1 + γ (n− 2 ) ]

[
dj − wEkg − cSj

]}
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dj − pS−Ekj

]
[ 1 + γ (n− 2 ) ]− 2 [ 1 + γ (n− 2 ) ]

[
dj − pS−Ekj

]
+ [ 1 + γ (n− 2 ) ]

[
dj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
− [ 1 + γ (n− 2 ) ]

[
dj − pS−Ekj

]
+ [ 1 + γ (n− 2 ) ]

[
dj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]
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=
[ 1 + γ (n− 2 ) ]

[
dj − wEkg − cSj −

(
dj − pS−Ekj

) ]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
[ 1 + γ (n− 2 ) ]

[
pS−Ekj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

.

(146)
(143) and (146) imply that:

qS−Ekj =
[ 1 + γ (n− 2 ) ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]

· 1

f (r, n)

{
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
+ wEkg

{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]− f (r, n)

}}
=

[ 1 + γ (n− 2 ) ]

f (r, n) [ 1− γ ] [ 1 + γ (n− 1 ) ]

·
{

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ
}

+wEkg
{

2γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 )− ( 2 + γ [n− 2 ] ) ]
}}

(147)

=
[ 1 + γ (n− 2 ) ]

f (r, n) [ 1− γ ] [ 1 + γ (n− 1 ) ]

·
{

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ
}

+ wEkg
{

2γ2 (n− 1 )− 2 [ 1 + γ (n− 2 ) ]
}}

=
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

+
[ 1 + γ (n− 2 ) ] 2wEkg {γ2 (n− 1 )− [ 1 + γ (n− 2 ) ]}

f (r, n) [ 1− γ ] [ 1 + γ (n− 1 ) ]

=
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

−
[ 1 + γ (n− 2 ) ] 2wEkg

f (r, n)
(148)

=
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − 2wEkg

}
f (r, n)

.

(149)
(147) reflects (5). (148) reflects that [ 1− γ ] [ 1 + γ (n− 1 ) ] = 1− γ2 (n− 1 ) + γ (n− 2) =
−{γ2 (n− 1 )− [ 1 + γ (n− 2 ) ]}.
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(120) and (146) imply that Sj’s profit is:

πS−Ekj =
Θk [ 1− γ ] [ 1 + γ (n− 1 ) ]

[ 1 + γ (n− 2 ) ]

[
qS−Ekj

]2
. (150)

(113) implies that:

qP−Ek =

[
dk − pP−Ek

]
[ 1 + γ (n− 2 ) ]− γ

n∑
h= 1
h 6= k

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − pP−Ek

]
[ 1 + γ (n− 2 ) + γ ]− γ

[
dk − pP−Ek

]
− γ

n∑
h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
− γ

[
dj − pS−Ekj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− γ

[
dj − pS−Ekj

]
− γ

 dk − pP−Ek +
n∑

h= 1
h 6= k
h 6= j

(
dh − pS−Ekh

)
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
1

[ 1− γ ] [ 1 + γ (n− 1 ) ]

{[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]−γ

[
dj − pS−Ekj

]
−2 [1 + γ (n− 2 )]

[
dj − pS−Ekj

]
+[1 + γ (n− 2 )]

[
dj − wEkg − cSj

]}
(151)

=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− γ

[
dj − pS−Ekj

]
+ [1 + γ (n− 2 )]

[
dj − wEkg − cSj − 2

(
dj − pS−Ekj

)]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− γ

[
dj − pS−Ekj

]
+ [1 + γ (n− 2 )]

[
2pS−Ekj − wEkg − cSj − dj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− γ

[
dj − pS−Ekj

]
+ [1 + γ (n− 2 )]

[
pS−Ekj − wEkg − cSj + pS−Ekj − dj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
1

[ 1− γ ] [ 1 + γ (n− 1 ) ]

{[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]−γ

[
dj − pS−Ekj

]
−[1 + γ (n− 2 )]

[
dj − pS−Ekj

]
+[1 + γ (n− 2 )]

[
pS−Ekj − wEkg − cSj

]}
=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− [1 + γ (n− 2 + 1 )]

[
dj − pS−Ekj

]
+ [1 + γ (n− 2 )]

[
pS−Ekj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dk − pP−Ek

]
[ 1 + γ (n− 1 ) ]− [1 + γ (n− 1 )]

[
dj − pS−Ekj

]
+ [1 + γ (n− 2 )]

[
pS−Ekj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]
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=
[ 1 + γ (n− 1 ) ]

[
dk − pP−Ek −

(
dj − pS−Ekj

)]
+ [1 + γ (n− 2 )]

[
pS−Ekj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
dk − pP−Ek −

[
dj − pS−Ekj

]
1− γ +

[1 + γ (n− 2 )]
[
pS−Ekj − wEkg − cSj

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

=
dk − pP−Ek −

[
dj − pS−Ekj

]
1− γ +qS−Ekj .

(152)
(152) reflects (146) and (151) reflects (145).
Assumption 2, (132), (143), (149), and (152) imply that:

qP−Ek =
dk − cPk −

[
pP−Ek − cPk

]
−
[
dj − cSj −

(
pS−Ekj − cSj

) ]
1− γ +qS−Ekj

=
dk − cPk −

[
dS − cS

]
1− γ

−
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

[ 1− γ ] f (r, n)

+
1

[ 1− γ ] f (r, n)

{
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
+wEkg

{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

}}
+

[ 1 + γ (n− 2 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − 2wEkg
}

f (r, n)

=
dk − cPk −

[
dS − cS

]
1− γ

−
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
[ 1− γ ] f (r, n)

−
γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

[ 1− γ ] f (r, n)

+
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
[ 1− γ ] f (r, n)

+
wEkg {γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]}

[ 1− γ ] f (r, n)

+
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

−
2wEkg [ 1 + γ (n− 2 ) ]

f (r, n)

=
dk − cPk −

[
dS − cS

]
1− γ
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+
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − [2 + γ (n− 2 )] ∆kj − γ [n− 1 ] ∆kj

}
[ 1− γ ] f (r, n)

+
wEkg

{
γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ]2 − γ [n− 1 ] [3 + 2γ (n− 2 ) ]− 2 [ 1− γ ] [ 1 + γ (n− 2 ) ]

}
[ 1− γ ] f (r, n)

+
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

.

(153)
Observe that:

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − [2 + γ (n− 2 )] ∆kj − γ [n− 1 ] ∆kj

}
[ 1− γ ] f (r, n)

=
[ 1 + γ (n− 1 ) ]

{
∆kj [ 2 + 2γ (n− 2 )− γ (n− 1 ) ]− [2 + γ (n− 2 )− γ] ∆kj

}
f (r, n)

=
[ 1 + γ (n− 1 ) ]

{
∆kj [ 2 + γ (n− 3 ) ]− [2 + γ (n− 3 )] ∆kj

}
f (r, n)

=
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

[
∆kj −∆kj

]
f (r, n)

;

(154)

∆kj −∆kj =
dS − cS − γ

[
dk − cPk

]
−
[
dk − cPk

]
[ 1 + γ (n− 2 ) ] + γ [n− 1 ]

[
dS − cS

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

(155)

=

[
dS − cS

]
[1 + γ (n− 1 )]−

[
dk − cPk

]
[ 1 + γ (n− 2 ) + γ ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]

=

[
dS − cS

]
[1 + γ (n− 1 )]−

[
dk − cPk

]
[ 1 + γ (n− 1 ) ]

[ 1− γ ] [ 1 + γ (n− 1 ) ]
=

dS − cS −
[
dk − cPk

]
[ 1− γ ]

; (156)

γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ]2 − γ [n− 1 ] [3 + 2γ (n− 2 ) ]− 2 [ 1− γ ] [ 1 + γ (n− 2 ) ]

= γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 )− ( 1− γ ) ]− γ [n− 1 ] [3 + 2γ (n− 2 ) ]

= γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ γ (n− 2 ) + γ ]− γ [n− 1 ] [3 + 2γ (n− 2 ) ]

= γ2 (n− 1 )+2γ [ 1 + γ (n− 2 ) ] [n− 1 ]−γ [n− 1 ] [3 + 2γ (n− 2 ) ]

= γ [n− 1 ] {γ + 2 [ 1 + γ (n− 2 ) ]− [3 + 2γ (n− 2 ) ]}
= γ [n− 1 ] [γ + 2 + 2γ (n− 2 ) − 3− 2γ (n− 2 ) ] = γ [n− 1 ] [γ − 1 ] .

(157)
(155) reflects (116) and (117).
(153), (154), (156), and (157) imply that:

qP−Ek = ∆kj −∆kj +
[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]

[
∆kj −∆kj

]
f (r, n)

+
wEkgγ [n− 1 ] [γ − 1 ]

[ 1− γ ] f (r, n)
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+
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

=

[
∆kj −∆kj

]
{[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n)}

f (r, n)
−
wEkgγ [n− 1 ]

f (r, n)

+
[ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

=
∆kj {[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n)}

f (r, n)
−
wEkgγ [n− 1 ]

f (r, n)

−∆kj {[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n)}
f (r, n)

+
2∆kj [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

f (r, n)
+

∆kjγ [ 1 + γ (n− 2 ) ]

f (r, n)

=
∆kj {[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]}

f (r, n)

−∆kj {[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n)− γ [ 1 + γ (n− 2 ) ]}
f (r, n)

−
wEkgγ [n− 1 ]

f (r, n)
.

(158)
(5) implies that:

[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2− 1 ) ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ] + 2 [ 1 + γ (n− 2 ) ]2

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2 )− γ ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ] + 2 [ 1 + γ (n− 2 ) ]2

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2 ) ]− γ [ 1 + γ (n− 1 ) ]

−2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] + γ2 [n− 1 ] + 2 [ 1 + γ (n− 2 ) ]2

= { 1 + γ (n− 1 )− 2 [ 1 + γ (n− 2 ) ] } [ 2 + γ (n− 2 ) ]− γ − γ2 [n− 1 ]

+γ2 [n− 1 ] + 2 [ 1 + γ (n− 2 ) ]2

= [ γ (n− 1 )− 1− 2γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= { γ [n− 1− 2 (n− 2 ) ]− 1 } [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= [ γ ( 3− n )− 1 ] [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= − [ 1 + γ (n− 3 ) ] [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= − [ 1 + γ (n− 2− 1 ) ] [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= − [ 1 + γ (n− 2 )− γ ] [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2
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= − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] + γ [ 2 + γ (n− 2 ) ]− γ + 2 [ 1 + γ (n− 2 ) ]2

= γ [ 2 + γ (n− 2 )− 1 ] + [ 1 + γ (n− 2 ) ] {2 [ 1 + γ (n− 2 ) ]− [ 2 + γ (n− 2 ) ]}
= γ [ 1 + γ (n− 2 ) ] + [ 1 + γ (n− 2 ) ] [ 2 + 2γ (n− 2 ) − 2− γ (n− 2 ) ]

= γ [ 1 + γ (n− 2 ) ] + γ [n− 2 ] [ 1 + γ (n− 2 ) ] = γ [n− 1] [ 1 + γ (n− 2 ) ] ; (159)

[ 1 + γ (n− 1 ) ] [ 2 + γ (n− 3 ) ]− f (r, n)− γ [ 1 + γ (n− 2 ) ]

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2− 1 ) ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ]− γ [ 1 + γ (n− 2 ) ]

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2 )− γ ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ]− γ [ 1 + γ (n− 2 ) ]

= [ 1 + γ (n− 1 ) ] [ 2 + γ (n− 2 ) ]− γ [ 1 + γ (n− 1 ) ]

−2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] + γ2 [n− 1 ]− γ [ 1 + γ (n− 2 ) ]

= { 1 + γ (n− 1 )− 2 [ 1 + γ (n− 2 ) ] } [ 2 + γ (n− 2 ) ]− γ − γ2 [n− 1 ]

+γ2 [n− 1 ]− γ [ 1 + γ (n− 2 ) ]

= [ γ (n− 1 )− 1− 2γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= { γ [n− 1− 2 (n− 2 ) ]− 1 } [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= − [ 1 + γ (n− 3 ) ] [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= − [ 1 + γ (n− 2− 1 ) ] [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= − [ 1 + γ (n− 2 )− γ ] [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] + γ [ 2 + γ (n− 2 ) ]− γ − γ [ 1 + γ (n− 2 ) ]

= − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] + γ [ 2 + γ (n− 2 )− ( 1 + γ (n− 2 ) ) ]− γ
= − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] +γ−γ = − [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ] . (160)

(158), (159), and (160) imply that:

qP−Ek =
∆kjγ [n− 1] [ 1 + γ (n− 2 ) ]

f (r, n)
+

∆kj [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]

f (r, n)
−
wEkgγ [n− 1 ]

f (r, n)

=
[ 1 + γ (n− 2 ) ]

{
∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]

}
− wEkgγ [n− 1 ]

f (r, n)
. � (161)

Lemma 23. Suppose Assumption 2 holds. Further suppose Pk (k ∈ {1, 2}) enters seller
market in category g and n > 1 downstream sellers in category g (g ∈ {1, 2}) compete on
prices. Then Pk’s profit-maximizing commission for each third-party seller in category g is
∆kj

γ4[n−1]2+4[ 1+γ(n−2 ) ]3[ 2+γ(n−2 ) ]

2

{
γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

} +
γ∆kj

2
.
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Proof. (105) implies that Pk chooses wEkg to:

Maximize ΠP−E
k =

[
pP−Ek − cPk

]
Θk q

P−E
k − F + wEkg Θk

n∑
j= 1
j 6= k

qS−Ekj (162)

⇒ ∂ΠP−E
k

∂wEkg
=

∂pP−Ek

∂wEkg
qP−Ek +

∂qP−Ek

∂wEkg

[
pP−Ek − cPk

]
+

n∑
j= 1
j 6= k

qS−Ekj + wEkg

n∑
j= 1
j 6= k

∂qS−Ekj

∂wEkg
= 0.

(163)
(132) implies that:

∂pP−Ek

∂wEkg
=

γ [n− 1 ] [ 3 + 2 γ (n− 2 ) ]

f (r, n)
. (164)

(143) implies that:

∂pS−Ekj

∂wEkg
=

γ2 (n− 1 ) + 2 [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

f (r, n)
. (165)

(149) implies that:
∂qS−Ekj

∂wEkg
= − 2 [ 1 + γ (n− 2 ) ]

f (r, n)
. (166)

(161) implies that:
∂qP−Ek

∂wEkg
= − γ [n− 1 ]

f (r, n)
. (167)

(132), (149), (161), (163) - (167) imply that:

0 =
γ [n− 1 ] [ 3 + 2 γ (n− 2 ) ]

f (r, n)

[ 1 + γ (n− 2 ) ]
{

∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]
}
− wEkgγ [n− 1 ]

f (r, n)

−γ [n− 1 ]

f (r, n)

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

f (r, n)

+
n∑

j= 1
j 6= k

[ 1 + γ (n− 2 ) ]
{

∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − 2wEkg
}

f (r, n)
− wEkg

n∑
j= 1
j 6= k

2 [ 1 + γ (n− 2 ) ]

f (r, n)

⇔ 0 =
γ [n− 1 ] [ 3 + 2 γ (n− 2 ) ]

f (r, n)

[ 1 + γ (n− 2 ) ]
{

∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]
}
− wEkgγ [n− 1 ]

f (r, n)

−γ [n− 1 ]

f (r, n)

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+ γ [n− 1 ] [3 + 2γ (n− 2 ) ]wEkg

f (r, n)
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+
[n− 1 ] [ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ − 2wEkg

}
f (r, n)

−wEkg [n− 1 ]
2 [ 1 + γ (n− 2 ) ]

f (r, n)
(168)

⇔ wEkg

{
γ2 [n− 1 ]2 [ 3 + 2 γ (n− 2 ) ]

[f (r, n)]2
+
γ2 [n− 1 ]2 [3 + 2γ (n− 2 ) ]

[f (r, n)]2

+
2 [n− 1 ] [ 1 + γ (n− 2 ) ]

f (r, n)
+

2 [n− 1 ] [ 1 + γ (n− 2 ) ]

f (r, n)

}
=

γ [n− 1 ] [ 3 + 2 γ (n− 2 ) ]

f (r, n)

[ 1 + γ (n− 2 ) ]
{

∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]
}

f (r, n)

−γ [n− 1 ]

f (r, n)

[ 1− γ ] [ 1 + γ (n− 1 ) ]
{

[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
f (r, n)

+
[n− 1 ] [ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
f (r, n)

⇔ 2wEkg

{
γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+2f (r, n) [ 1 + γ (n− 2 ) ]

}
= γ [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

{
∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]

}
−γ [ 1− γ ] [ 1 + γ (n− 1 ) ]

{
[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+f (r, n) [ 1 + γ (n− 2 ) ]

{
∆kj2 [ 1 + γ (n− 2 ) ] + ∆kjγ

}
⇔ 2wEkg

{
γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+2f (r, n) [ 1 + γ (n− 2 ) ]

}
= γ [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] ∆kjγ [n− 1]

+γ [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] ∆kj [2 + γ (n− 2 ) ]

−γ [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )] ∆kj

−γ2 [ 1− γ ] [ 1 + γ (n− 1 ) ] [n− 1 ] ∆kj

+2 [ 1 + γ (n− 2 ) ]2 f (r, n) ∆kj + γf (r, n) [ 1 + γ (n− 2 ) ] ∆kj

⇔ 2wEkg

{
γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+2f (r, n) [ 1 + γ (n− 2 ) ]

}
= ∆kj

{
γ2 [n− 1] [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 f (r, n)

−γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

}
+γ∆kj

{
[ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ] + f (r, n) [ 1 + γ (n− 2 ) ]

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

}
. (169)
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(168) reflects ∆kj = ∆kh and ∆kj = ∆kh for ∀j, h ∈ {1, 2, ..., n}, j 6= k, and h 6= k from (116)
and (117).
(5) implies that:

γ2 [n− 1] [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]+2 [ 1 + γ (n− 2 ) ]2 f (r, n)

−γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

= γ2 [n− 1] [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

−γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

= γ2 [n− 1] [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]

+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ] 2 [ 1 + γ (n− 2 ) ]2

−γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

= γ2 [n− 1] [ 1 + γ (n− 2 ) ] { 3 + 2 γ (n− 2 )− 2 [ 1 + γ (n− 2 ) ] }
+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

= γ2 [n− 1] [ 1 + γ (n− 2 ) ] { 3 + 2 γ (n− 2 )− 2− 2γ (n− 2 ) }
+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

= γ2 [n− 1] [ 1 + γ (n− 2 ) ]−γ2 [ 1− γ ] [n− 1 ] [ 1 + γ (n− 1 ) ]

+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1] { 1 + γ (n− 2 )− [ 1− γ ] [ 1 + γ (n− 1 ) ] }
+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1] [ 1 + γ (n− 2 )− ( 1− γ )− ( 1− γ ) γ (n− 1 )]

+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1] [ γ (n− 2 ) + γ − ( 1− γ ) γ (n− 1 )]+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1] [ γ (n− 1 )− ( 1− γ ) γ (n− 1 )]+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ3 [n− 1]2 [ 1− ( 1− γ )]+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= γ4 [n− 1]2+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ] ;
(170)

[ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]+f (r, n) [ 1 + γ (n− 2 ) ]

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

= [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]

+ [ 1 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

= [ 3 + 2 γ (n− 2 ) ] [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]
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+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

= [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ] { 3 + 2 γ (n− 2 ) + 2 [ 1 + γ (n− 2 ) ] }
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

= [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ] [ 5 + 4 γ (n− 2 ) ]

−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

− [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]

= [2 + γ (n− 2 ) ] {[ 1 + γ (n− 2 ) ] [ 5 + 4 γ (n− 2 ) ]− [ 1− γ ] [ 1 + γ (n− 1 ) ]}
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
{

5 + 4 γ2 (n− 2 )2 + 9 γ (n− 2 )− [ 1 + γ (n− 1 )− γ [ 1 + γ (n− 1 ) ] ]
}

−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
{

5 + 4 γ2 (n− 2 )2 + 9 γ (n− 2 )−
[

1 + γ (n− 1 )− γ − γ2 (n− 1 )
]}

−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
[
5 + 4 γ2 (n− 2 )2 + 9 γ (n− 2 )− 1− γ (n− 1 ) + γ + γ2 (n− 1 )

]
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
[
4 + 4 γ2 (n− 2 )2 + 9 γ (n− 2 )− γ (n− 1− 1 ) + γ2 (n− 1 )

]
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
[
4 + 4 γ2 (n− 2 )2 + 9 γ (n− 2 )− γ (n− 2 ) + γ2 (n− 1 )

]
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
[
4 + 4 γ2 (n− 2 )2 + 8 γ (n− 2 ) + γ2 (n− 1 )

]
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
{

[2 + 2γ (n− 2 ) ]2 + γ2 (n− 1 )
}
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= [2 + γ (n− 2 ) ]
{

4 [1 + γ (n− 2 ) ]2 + γ2 (n− 1 )
}
−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= 4 [2 + γ (n− 2 ) ] [1 + γ (n− 2 ) ]2+γ2 [n− 1 ] [2 + γ (n− 2 ) ]−γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]

= 4 [2 + γ (n− 2 ) ] [1 + γ (n− 2 ) ]2+γ2 [n− 1 ] {2 + γ (n− 2 )− [ 1 + γ (n− 2 ) ] }
= 4 [2 + γ (n− 2 ) ] [1 + γ (n− 2 ) ]2+γ2 [n− 1 ] ;

(171)
γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+2f (r, n) [ 1 + γ (n− 2 ) ]

= γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+2
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

[ 1 + γ (n− 2 ) ]

= γ2 [n− 1 ] [ 3 + 2 γ (n− 2 ) ]+4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]−2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]
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= γ2 [n− 1 ] { 3 + 2 γ (n− 2 )− 2 [ 1 + γ (n− 2 ) ] }+4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1 ] [ 3 + 2 γ (n− 2 )− 2− 2γ (n− 2 ) ]+4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

= γ2 [n− 1 ]+4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] .
(172)

(169) - (172) imply that:

2wEkg

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}

= ∆kj

{
γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
+γ∆kj

{
4 [2 + γ (n− 2 ) ] [1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
⇔ wEkg = ∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

2

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} +
γ∆kj

2
. � (173)

Lemma 24. Suppose Assumption 2 holds. Further suppose Pk (k ∈ {1, 2}) enters seller
market in category g and n > 1 downstream sellers in category g (g ∈ {1, 2}) compete on
prices. Then each seller’s (Sj) equilibrium output (QS−E

kj ) is
Θk∆kj [ 1+γ(n−2 ) ]{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]
,

Sj’s profit is Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kj{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

}2

,

Pk’s equilibrium output (qP−Ek ) is 1
2

{
∆kjγ[n−1]{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}
γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

+ ∆kj

}
, and Pk’s profit

from the commission it collects from sellers and from entering seller market is ΘkHkj − F .

Proof. (5), (149) and Lemma 23 imply that:

qS−Ekj =
[ 1 + γ (n− 2 ) ]

f (r, n)

·
{

∆kj2 [ 1 + γ (n− 2 ) ]+∆kjγ

−∆kj
γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
− γ∆kj

}
=

[ 1 + γ (n− 2 ) ]

f (r, n)

·
{

∆kj2 [ 1 + γ (n− 2 ) ]−∆kj
γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
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=
[ 1 + γ (n− 2 ) ] ∆kj

f (r, n)

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 ) ]
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
−γ4 [n− 1]2 − 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
=

[ 1 + γ (n− 2 ) ] ∆kj

f (r, n)

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 ) ] γ2 [n− 1 ] + 8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
=

[ 1 + γ (n− 2 ) ] ∆kj

f (r, n)

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 ) ] γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ4 [n− 1]2
}

=
[ 1 + γ (n− 2 ) ] ∆kj

f (r, n)

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 ) ] γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ4 [n− 1]2
}

=
[ 1 + γ (n− 2 ) ] ∆kj

f (r, n)

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

=
∆kj [ 1 + γ (n− 2 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

.

(174)
(174) reflects (5).
(150) and (174) imply that:

πS−Ekj =
Θk [ 1− γ ] [ 1 + γ (n− 1 ) ]

[ 1 + γ (n− 2 ) ]

{
∆kj [ 1 + γ (n− 2 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2
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= Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kj

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2

.

(175)
(5), (161) and Lemma 23 imply that:

qP−Ek =
1

f (r, n)

{
[ 1 + γ (n− 2 ) ]

{
∆kjγ [n− 1] + ∆kj [2 + γ (n− 2 ) ]

}
− γ [n− 1 ]

2

[
∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
+ γ∆kj

]}

=
1

f (r, n)

{
∆kjγ [n− 1] [ 1 + γ (n− 2 ) ]+∆kj [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]

− ∆kjγ [n− 1 ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
− γ2 [n− 1 ]

2
∆kj

}

=
1

2f (r, n)

{
∆kjγ [n− 1]

[
2 [1 + γ (n− 2 )]− γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

]

+∆kj

{
2 [ 1 + γ (n− 2 ) ] [2 + γ (n− 2 ) ]− γ2 [n− 1 ]

}}

=
1

2f (r, n)

{
∆kjγ [n− 1]

[
2 [1 + γ (n− 2 )]− γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

]

+∆kjf (r, n)

}
. (176)

Observe that:

2 [1 + γ (n− 2 )]− γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

=
1

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

·
{

2 [1 + γ (n− 2 )] γ2 [n− 1 ] + 8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
=

2 [1 + γ (n− 2 )] γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]− γ4 [n− 1]2

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

=
{2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]}

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
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=
f (r, n)

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

.

(177)
(176) and (177) reflect (5).
(176) and (177) imply that:

qP−Ek =
1

2f (r, n)

{
∆kjγ [n− 1]

f (r, n)
{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
+∆kjf (r, n)

}

=
1

2

{
∆kjγ [n− 1]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ ∆kj

}
.

(178)
(5), (132) and Lemma 23 imply that:

pP−Ek −cPk

=
1

f (r, n)

{
[ 1− γ ] [ 1 + γ (n− 1 ) ]

{
[2 + γ (n− 2 )] ∆kj + γ [n− 1 ] ∆kj

}
+
γ [n− 1 ] [3 + 2γ (n− 2 ) ]

2

·
[

∆kj
γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
+ γ∆kj

]}

=
1

f (r, n)

{
[ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )] ∆kj+γ [n− 1 ] [ 1− γ ] [ 1 + γ (n− 1 ) ] ∆kj

+
γ [n− 1 ] [3 + 2γ (n− 2 ) ]

2
∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+
γ [n− 1 ] [3 + 2γ (n− 2 ) ]

2
γ∆kj

}
=

1

f (r, n)

{
∆kj

[
[ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )] +

γ2 [n− 1 ] [3 + 2γ (n− 2 ) ]

2

]
+γ [n− 1 ] ∆kj

· [( 1− γ ) ( 1 + γ [n− 1 ] )

+
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

]}
.

(179)
Observe that:

[ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]+
γ2 [n− 1 ] [3 + 2γ (n− 2 ) ]

2
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= [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]+
γ2 [n− 1 ] [1 + γ (n− 2 ) + 2 + γ (n− 2 ) ]

2

= [ 1− γ ] [ 1 + γ (n− 1 ) ] [2 + γ (n− 2 )]+
γ2 [n− 1 ] [2 + γ (n− 2 ) ]

2
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )]

[
[ 1− γ ] [ 1 + γ (n− 1 ) ] +

γ2 (n− 1 )

2

]
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )]

[
1 + γ (n− 1 )− γ − γ2 (n− 1 ) +

γ2 (n− 1 )

2

]
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )]

[
1 + γ (n− 1− 1 )− γ2 (n− 1 )

2

]
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )]

[
1 + γ (n− 2 )− γ2 (n− 1 )

2

]
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )] [1 + γ (n− 2 )]−γ
2 [n− 1 ] [2 + γ (n− 2 )]

2
+
γ2 [n− 1 ] [1 + γ (n− 2 ) ]

2

= [2 + γ (n− 2 )] [1 + γ (n− 2 )]+
γ2 [n− 1 ] {1 + γ (n− 2 )− [2 + γ (n− 2 )] }

2

= [2 + γ (n− 2 )] [1 + γ (n− 2 )]−γ
2 [n− 1 ]

2
=
f (r, n)

2
;

(180)

[ 1− γ ] [ 1 + γ (n− 1 ) ]+
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

= 1+γ [n− 1 ]−γ−γ2 [n− 1 ] +
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

= 1+γ [n− 1− 1 ]−γ2 [n− 1 ] +
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

= 1+γ [n− 2 ]−γ2 [n− 1 ] +
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2
[

1 + γ (n− 2 )− γ2 (n− 1 )
] {
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
+ [3 + 2γ (n− 2 ) ]

{
γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 )] γ2 [n− 1 ]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]
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−2 γ4 [n− 1]2 − 8 γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ [3 + 2γ (n− 2 ) ] γ4 [n− 1]2

+4 [3 + 2γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 )] γ2 [n− 1 ]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 8 γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ [1 + γ (n− 2 ) + 2 + γ (n− 2 ) ] γ4 [n− 1]2

+ 4 [1 + γ (n− 2 ) + 2 + γ (n− 2 ) ] [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 8 γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ [1 + γ (n− 2 ) ] γ4 [n− 1]2 + [2 + γ (n− 2 ) ] γ4 [n− 1]2

+ 4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]2
}

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 6 γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ [1 + γ (n− 2 ) ] γ4 [n− 1]2 + [2 + γ (n− 2 ) ] γ4 [n− 1]2

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}}

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 4γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
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+ [1 + γ (n− 2 ) ] γ4 [n− 1]2−2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]+[2 + γ (n− 2 ) ] γ4 [n− 1]2

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
(181)

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 4γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+ [1 + γ (n− 2 ) ] γ2 [n− 1 ]
{
γ2 [n− 1 ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

}
+[2 + γ (n− 2 ) ] γ4 [n− 1]2

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 γ4 [n− 1]2 − 4γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + [2 + γ (n− 2 ) ] γ4 [n− 1]2

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
(182)

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 4γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + [2 + γ (n− 2 )− 1 ] γ4 [n− 1]2

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 4γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + [1 + γ (n− 2 ) ] γ4 [n− 1]2
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+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+ [1 + γ (n− 2 ) ] γ4 [n− 1]2 − 2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+ [1 + γ (n− 2 ) ] γ2 [n− 1 ]
{
γ2 [n− 1 ]− 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

}
+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−γ4 [n− 1]2 − 2γ2 [n− 1 ] [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+4 [ 1 + γ (n− 2 ) ]4 [ 2 + γ (n− 2 ) ] + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
(183)

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ]2 − γ2 [n− 1 ]
}

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)
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+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ] [ 2− 1 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] 2 [ 1 + γ (n− 2 ) ] [−1]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

−4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)

+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
(184)

=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+8 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)− [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n)
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+2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n) + 2 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

−2 [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
. (185)

Observe that:

2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ4 [n− 1]2+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= 2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ2 [n− 1 ] 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ] 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]−γ4 [n− 1]2+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= 2γ2 [n− 1 ] [ 1 + γ (n− 2 )]−γ2 [n− 1 ] 2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]

+γ2 [n− 1 ]
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

+4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= 2γ2 [n− 1 ] [ 1 + γ (n− 2 )] {1− [ 2 + γ (n− 2 ) ]}
+γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ] (186)

= −2γ2 [n− 1 ] [ 1 + γ (n− 2 )] [1 + γ (n− 2 ) ]

+γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= −2γ2 [n− 1 ] [ 1 + γ (n− 2 )]2

+γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

= 2 [ 1 + γ (n− 2 )]2
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}

+γ2 [n− 1 ] f (r, n)

= 2 [ 1 + γ (n− 2 )]2 f (r, n)+γ2 [n− 1 ] f (r, n) .
(187)

(185) and (187) imply that:

[ 1− γ ] [ 1 + γ (n− 1 ) ] +
[3 + 2γ (n− 2 ) ]

2

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
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=
1

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 )]2 f (r, n)+γ2 [n− 1 ] f (r, n)

−2 [1 + γ (n− 2 ) ] γ2 [n− 1 ] f (r, n) + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ] f (r, n)

}
=

f (r, n)

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ]

−2 [1 + γ (n− 2 ) ] γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
=

f (r, n)

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}
·
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ]

+2 [1 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ] [ 2 + γ (n− 2 ) ]− γ2 [n− 1 ]
}}

=

f (r, n)

{
2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)

}
2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} .

(188)
(180) - (188) reflect (5).
(179), (180), and (188) imply that:

pP−Ek − cPk

=
1

f (r, n)

{
∆kj

f (r, n)

2

+γ [n− 1 ] ∆kj

f (r, n)
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)
}

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} }

=
∆kj

2
+

∆kjγ [n− 1 ]
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)
}

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} .

(189)
(162), (174), (178), (189), and Lemma 23 imply that:

ΠP−E
k =

Θk

2

{
∆kj

2
+

∆kjγ [n− 1 ]
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)
}

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} }
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·
{

∆kjγ [n− 1]
{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
+ ∆kj

}

+Θk

{
∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

2
{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} +
γ∆kj

2

}

·
n∑

j= 1
j 6= k

∆kj [ 1 + γ (n− 2 ) ]
{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]
− F

=
Θk

2

{
∆kj

2
+

∆kjγ [n− 1 ]
{

2 [ 1 + γ (n− 2 )]2 + γ2 [n− 1 ] + 2 [1 + γ (n− 2 ) ] f (r, n)
}

2g (r, n)

}

·
{

∆kjγ [n− 1]
{

2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]
}

g (r, n)
+ ∆kj

}

+Θk

{
∆kj

γ4 [n− 1]2 + 4 [ 1 + γ (n− 2 ) ]3 [ 2 + γ (n− 2 ) ]

2g (r, n)
+
γ∆kj

2

}

· [n− 1 ]
∆kj [ 1 + γ (n− 2 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
g (r, n)

− F (190)

= ΘkHkj−F ,
(191)

where Hkj is given by (7), and (190) reflects (6) and ∆kj = ∆kh for ∀j, h ∈ {1, 2, ..., n},
j 6= k, and h 6= k from (116). �

Condition E F ∈ (F1,min {F2, F3}), where F1 ≡ Θ2H22−
Θ2n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃21)

2
+(∆̃22)

2
]

4[ 2+γ(n−3 ) ]
,

F2 ≡ ΘkHkj−
Θkn[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]

2

4[ 2+γ(n−3 ) ]
, and F3 ≡ Θ1H11−

Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]
[
(∆̃11)

2
+(∆̃12)

2
]

4[ 2+γ(n−3 ) ]
.

Condition E ensures that platform entry is feasible in this setting.

Monopoly Platform (MP).

Proposition 5. Suppose Condition E holds. In the monopolistic platform setting, both
sellers sell on the platform (e.g., Pk) and the platform enters both sellers’product markets
in equilibrium. Sj’s equilibrium profit is

Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ] { ∆kj{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}
γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

}2, and the plat-
form’s equilibrium profit is ΘkHkj − F .

Proof. Lemma 21 implies that Pk’s profit is
Θkn[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]

2

4[ 2+γ(n−3 ) ]
, if Sj (j ∈ {1, 2, ..., n})

in category g (g ∈ {1, 2}) sells product j on Pk and Pk does not enter Sj’s product market.
Lemma 24 implies that Pk’s profit is ΘkHkj−F , if Sj sells product j on Pk and Pk enters Sj’s

product market. Because Condition E holds, ΘkHkj−F >
Θkn[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]

2

4[ 2+γ(n−3 ) ]
, i.e.,

Pk secures a higher profit by entering Sj’s market than "no entry". Therefore, if Sj sells on

76



Pk, Pk will enter Sj’s market, Lemma 24 implies that Pk’s profit is ΘkHkj−F and Sj’s profit

is Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kj{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

}2

. Therefore,

knowing Pk’s entry decisions, Sj will choose to sell on Pk because he secures a positive profit if

he sells on Pk (i.e., Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kj{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

}2

>

0) while he secures zero profit if he does not sell on Pk, regardless of the other seller’s choice.
Therefore, in equilibrium, both S1 and S2 sell on Pk, and Pk enters each seller’s market. �

Platform Competition (PC).

Lemma 25. Suppose Assumption 2 holds. Further suppose both platforms commit not to
enter. Then sellers in category g will: (i) sell on Pi if Θi > Θk (g, i, k ∈ {1, 2}); and (ii)
sell on Pk if Θi < Θk.

Proof. Lemma 21 implies that Sj’s profit is
Θk[ 1−γ ][ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kj]

2

4[ 2+γ(n−3 ) ]2
if Sj sells on

Pk (j ∈ {1, 2, ..., n}, k ∈ {1, 2}). Assumption 2 and (86) imply that ∆̃kj = ∆̃ij for ∀j ∈
{1, 2, ..., n}. Consequently, if Θ1 = Θ2, then Sj is indifferent between selling on P1 and
selling on P2; if Θi > Θk, then Sj sells on Pi. �

Lemma 26. Suppose Assumption 2 and Condition E hold. Further suppose platforms both

make no commitment. Then sellers in category g will: (i) sell on P1 when Θ1

Θ2
>
[

∆2g

∆1g

]2

; and

(ii) sell on P2 when Θ1

Θ2
<
[

∆2g

∆1g

]2

(g, i, k ∈ {1, 2}).

Proof. Condition E implies that Pk will enter seller market if Sj sells on Pk. Lemma 24 im-

plies that Sj’s profit isΘk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kjg{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]

}2

if Sj sells on Pk (j ∈ {1, 2, ..., n}, k ∈ {1, 2}). Therefore, for j ∈ {1, 2, ..., n}, i, k ∈ {1, 2}, Sj
in category g will sell on Pi if

Θi [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆ijg

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2

> Θk [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆kjg

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2

⇔ Θi

Θk

>

[
∆kg

∆ig

]2

. �

It can be shown that for γ ∈ (0, 1) and n > 2:

ξ (γ, n) ≡
2 [ 2 + γ (n− 3 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

< 1. (192)
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Lemma 27. Suppose Assumption 2 holds. Further suppose Pk commits not to enter and Pi
makes no commitment (i, k ∈ {1, 2}, i 6= k). Then sellers in category g will: (i) sell on Pk

(j ∈ {1, 2, ..., n}, g, k ∈ {1, 2}) if Θk
Θi

>
[

∆igξ(γ,n)

∆̃kg

]2

; and (ii) sell on Pi if Θk
Θi

<
[

∆igξ(γ,n)

∆̃kg

]2

.

Proof. Condition E implies that Pi will enter Sj’s market if Sj sells on Pi (j ∈ {1, 2, ..., n}, i ∈
{1, 2}). Lemma 21 implies that Sj’s profit is Θk[ 1−γ ][ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃kjg]

2

4[ 2+γ(n−3 ) ]2
if Sj sells on

Pk (j ∈ {1, 2, ..., n}, k ∈ {1, 2}). Lemma 24 implies that Sj’s profit is
Θi [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ] { ∆ijg{2[ 1+γ(n−2 ) ]2+γ2[n−1 ]}

γ2[n−1 ]+4[ 1+γ(n−2 ) ]2[ 2+γ(n−2 ) ]
}2 if Sj sells on

Pi. Therefore, Sj will sell on Pk if:

Θk [ 1− γ ] [ 1 + γ (n− 2 ) ] [ 1 + γ (n− 1 ) ]
[
∆̃kjg

]2

4 [ 2 + γ (n− 3 ) ]2

> Θi [ 1− γ ] [ 1 + γ (n− 1 ) ] [ 1 + γ (n− 2 ) ]

{
∆ijg

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2

⇔
Θk

[
∆̃kjg

]2

4 [ 2 + γ (n− 3 ) ]2
> Θi

{
∆ijg

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

}2

⇔ Θk

Θi

>

{
2∆ig [ 2 + γ (n− 3 ) ]

{
2 [ 1 + γ (n− 2 ) ]2 + γ2 [n− 1 ]

}
∆̃kg

{
γ2 [n− 1 ] + 4 [ 1 + γ (n− 2 ) ]2 [ 2 + γ (n− 2 ) ]

} }2

⇔ Θk

Θi

>

[
∆igξ (γ, n)

∆̃kg

]2

. �

Proposition 6. Suppose Assumptions 2 and 3, and Condition E hold. When one platform
is suffi ciently stronger than the other platform, sellers in both categories compete with the
strong platform; when one platform is reletively stronger than the other platform, sellers in
category 1 compete with the strong platform whereas sellers in category 2 compete with the
weak platform or face no competition from platforms; when two platforms are suffi ciently
similar in platform strength, sellers in both categories face no competition from platforms.

Proof. Condition E ensures that each platform enters each seller’s market if the platform
makes no commitment. Since category 1 and category 2 sellers offer independent products,
the choice of platform by category 1 sellers is independent of the choice made by category 2
sellers. (116) implies that:

∆21

∆11

<
∆22

∆12

⇔
dS1 − cS1 − γ

[
d2 − cP2

]
dS1 − cS1 − γ [ d1 − cP1 ]

<
dS2 − cS2 − γ

[
d2 − cP2

]
dS2 − cS2 − γ [ d1 − cP1 ]

⇔
{
dS1 − cS1 − γ

[
d2 − cP2

]} {
dS2 − cS2 − γ

[
d1 − cP1

]}
<
{
dS1 − cS1 − γ

[
d1 − cP1

]} {
dS2 − cS2 − γ

[
d2 − cP2

]}
⇔
[
dS1 − cS1

] [
dS2 − cS2

]
−γ
[
d1 − cP1

] [
dS1 − cS1

]
−γ
[
d2 − cP2

] [
dS2 − cS2

]
+γγ

[
d2 − cP2

] [
d1 − cP1

]
<
[
dS1 − cS1

] [
dS2 − cS2

]
−γ
[
d2 − cP2

] [
dS1 − cS1

]
−γ
[
d1 − cP1

] [
dS2 − cS2

]
+γγ

[
d1 − cP1

] [
d2 − cP2

]
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⇔ −γ
[
d1 − cP1

] [
dS1 − cS1

]
−γ
[
d2 − cP2

] [
dS2 − cS2

]
< −γ

[
d2 − cP2

] [
dS1 − cS1

]
− γ

[
d1 − cP1

] [
dS2 − cS2

]
⇔ −γ

[
d1 − cP1

] [
dS1 − cS1

]
− γ

[
d2 − cP2

] [
dS2 − cS2

]
+γ
[
d2 − cP2

] [
dS1 − cS1

]
+ γ

[
d1 − cP1

] [
dS2 − cS2

]
< 0

⇔ γ
[
d2 − cP2

] [
dS1 − cS1 −

(
dS2 − cS2

) ]
+ γ

[
d1 − cP1

] [
dS2 − cS2 −

(
dS1 − cS1

)]
< 0

⇔ γ
[
d2 − cP2

] [
dS1 − cS1 −

(
dS2 − cS2

) ]
− γ

[
d1 − cP1

] [
dS1 − cS1 −

(
dS2 − cS2

) ]
< 0

⇔ γ
[
d2 − cP2 −

(
d1 − cP1

) ] [
dS1 − cS1 −

(
dS2 − cS2

) ]
< 0. (193)

(193) holds due to Assumptions 2 and 3.
(118) and (193) imply that:

1 <

[
∆21

∆11

]2

<

[
∆22

∆12

]2

. (194)

(86) and (116) imply that for i, g ∈ {1, 2}:

∆ig

∆̃kg

=
dSg − cSg − γ

[
di − cPi

]
[ 1− γ ] [ 1 + γ (n− 1 ) ]

1 + γ [n− 1 ]

dSg − cSg =
dSg − cSg − γ

[
di − cPi

]
[ 1− γ ] [dSg − cSg]

=
dSg − cSg − γ

[
di − cPi

]
dSg − cSg − γ [dSg − cSg] < 1. (195)

(195) holds because of (88).
(192) and (195) imply that for i, g ∈ {1, 2}:[

∆igξ (γ, n)

∆̃kg

]2

< 1 and

[
∆̃kg

∆igξ (γ, n)

]2

> 1. (196)

(86) and (116) imply that:

∆11

∆̃21

>
∆12

∆̃22

⇔
dS1 − cS1 − γ

[
d1 − cP1

]
dS1 − cS1 − γ [dS1 − cS1]

>
dS2 − cS2 − γ

[
d1 − cP1

]
dS2 − cS2 − γ [dS2 − cS2]

⇔
dS1 − cS1 − γ

[
d1 − cP1

]
[ 1− γ ] [dS1 − cS1]

>
dS2 − cS2 − γ

[
d1 − cP1

]
[ 1− γ ] [dS2 − cS2]

⇔
dS1 − cS1 − γ

[
d1 − cP1

]
dS1 − cS1

>
dS2 − cS2 − γ

[
d1 − cP1

]
dS2 − cS2

⇔ 1−
γ
[
d1 − cP1

]
dS1 − cS1

> 1−
γ
[
d1 − cP1

]
dS2 − cS2

⇔ d1 − cP1
dS1 − cS1

<
d1 − cP1
dS2 − cS2

⇔ dS2 − cS2 < dS1 − cS1.

(197)
The last inequality in (197) holds because of (88).
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(196) and (197) imply that:

1 <

[
∆̃21

∆11ξ (γ, n)

]2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (198)

(86) and (116) imply that:

∆21

∆11

<
∆̃21

∆11

⇔ ∆21

∆̃21

< 1⇔
dS1 − cS1 − γ

[
d2 − cP2

]
dS1 − cS1 − γ [dS1 − cS1]

< 1

⇔ dS1 − cS1 − γ
[
d2 − cP2

]
< dS1 − cS1 − γ

[
dS1 − cS1

]
⇔ −γ

[
d2 − cP2

]
< −γ

[
dS1 − cS1

]
⇔ d2 − cP2 > dS1 − cS1; (199)

∆22

∆12

<
∆̃22

∆12

⇔ ∆22

∆̃22

< 1⇔
dS2 − cS2 − γ

[
d2 − cP2

]
dS2 − cS2 − γ [dS2 − cS2]

< 1

⇔ dS2 − cS2 − γ
[
d2 − cP2

]
< dS2 − cS2 − γ

[
dS2 − cS2

]
⇔ −γ

[
d2 − cP2

]
< −γ

[
dS2 − cS2

]
⇔ d2 − cP2 > dS2 − cS2. (200)

The last inequalities in (199) and (200) hold because of (88).
(192) and (199) imply that: [

∆21

∆11

]2

<

[
∆̃21

∆11ξ (γ, n)

]2

. (201)

(192) and (200) imply that: [
∆22

∆12

]2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (202)

(194) and (202) imply that:

1 <

[
∆21

∆11

]2

<

[
∆22

∆12

]2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (203)

Case I. Θ1 > Θ2.
Lemma 25 implies that if both platforms commit not to enter, then sellers in both cate-

gories 1 and 2 will sell on P1 because Θ1 > Θ2.
Lemma 27 implies that if P1 commits not to enter and P2 makes no commitment, then

sellers in categories 1 and 2 will sell on P1 because Θ1

Θ2
> 1 by assumption and

[
∆21ξ(γ,n)

∆̃11

]2

< 1

and
[

∆22ξ(γ,n)

∆̃12

]2

< 1 from (196).

Case I(i).
[

∆22

∆12

]2

<
[

∆̃21

∆11ξ(γ,n)

]2

.
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(198) and (203) imply that:

1 <

[
∆21

∆11

]2

<

[
∆22

∆12

]2

<

[
∆̃21

∆11ξ (γ, n)

]2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (204)

First suppose Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

. Lemmas 26 and (204) imply that sellers in both cate-

gories 1 and 2 sell on P1, if platforms both make no commitment. Lemma 27, (192) and
(204) imply that sellers in both categories 1 and 2 sell on P1, if P2 commits not to enter and
P1 makes no commitment, because

Θ2

Θ1

<

[
∆11ξ (γ, n)

∆̃21

]2

⇔ Θ1

Θ2

>

[
∆̃21

∆11ξ (γ, n)

]2

, and (205)

Θ2

Θ1

<

[
∆12ξ (γ, n)

∆̃22

]2

⇔ Θ1

Θ2

>

[
∆̃22

∆12ξ (γ, n)

]2

. (206)

The last inequalities in (205) and (206) hold because of (88). Consequently, sellers in both
categories 1 and 2 sell on P1, regardless of platforms’commitments. Condition E ensures
P1 enters each seller’s market if P1 makes no commitment. Therefore, Lemmas 21 and 24
imply that P1’s profit is: (i) Θ1H11 − F + Θ1H12 − F if P1 makes no commitment; and

(ii)
Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃11)

2
+(∆̃12)

2
]

4[ 2+γ(n−3 ) ]
if P1 commits not to enter. Condition E ensures

that Θ1H1g − F >
Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ][∆̃1g]

2

4[ 2+γ(n−3 ) ]
for g ∈ {1, 2}. Therefore, in equilibrium, P1

makes no commitment, and sellers in both categories 1 and 2 sell on P1 if Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

.

Next suppose Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)
. Lemmas 26 and (204) imply that sellers

in both categories 1 and 2 sell on P1, if platforms both make no commitment. Lemma 27,
(192) and (204) imply that if P2 commits not to enter and P1 makes no commitment, then
sellers in category 1 sell on P1 and sellers in category 2 sell on P2, because

Θ2

Θ1

<

[
∆11ξ (γ, n)

∆̃21

]2

⇔ Θ1

Θ2

>

[
∆̃21

∆11ξ (γ, n)

]2

, and (207)

Θ2

Θ1

>

[
∆12ξ (γ, n)

∆̃22

]2

⇔ Θ1

Θ2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (208)

The last inequalities in (207) and (208) hold because of (88). Consequently, sellers in cate-
gory 1 sell on P1, regardless of the platforms’commitments. If P2 makes no commitment,
sellers in category 2 sell on P1. If P2 commits not to enter, sellers in category 2: (i) sell
on P1 if P1 commits not to enter; and (ii) sell on P2 if P1 makes no commitment. Lem-
mas 21 and 24 imply that P1’s profit is: (i) Θ1H11−F if P1 makes no commitment; and (ii)
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Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]
[
(∆̃11)

2
+(∆̃12)

2
]

4[ 2+γ(n−3 ) ]
if P1 commits not to enter. Condition E ensures that P1

secures more profit by making no commitment than by committing not to enter. Therefore,
in equilibrium, P1 makes no commitment whereas P2 commits not to enter, and sellers in cat-

egory 1 sell on P1 whereas sellers in category 2 sell on P2, if Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)
.

Next suppose Θ1

Θ2
∈
([

∆22

∆12

]2

,
[

∆̃21

∆11ξ(γ,n)

]2
)
. Lemmas 26 and (204) imply that sellers in

both categories 1 and 2 sell on P1, if platforms both make no commitment. Lemma 27, (192)
and (204) imply that if P2 commits not to enter and P1 makes no commitment, then sellers
in categories 1 and 2 sell on P2, because

Θ2

Θ1

>

[
∆11ξ (γ, n)

∆̃21

]2

⇔ Θ1

Θ2

<

[
∆̃21

∆11ξ (γ, n)

]2

, and (209)

Θ2

Θ1

>

[
∆12ξ (γ, n)

∆̃22

]2

⇔ Θ1

Θ2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (210)

The last inequalities in (209) and (210) hold because of (88). Consequently, if P2 makes no
commitment, sellers in both categories 1 and 2 sell on P1. If P2 commits not to enter, sellers
in both categories 1 and 2: (i) sell on P1 if P1 commits not to enter; and (ii) sell on P2 if
P1 makes no commitment. Therefore, in equilibrium, both P1 and P2 commit not to enter,

and sellers in both categories 1 and 2 sell on P1, if Θ1

Θ2
∈
([

∆22

∆12

]2

,
[

∆̃21

∆11ξ(γ,n)

]2
)
.

Next suppose Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆22

∆12

]2
)
. Lemmas 26 and (204) imply that sellers in cate-

gory 1 sell on P1 whereas sellers in category 2 sell on P2, if platforms both make no commit-
ment. Lemma 27, (192) and (204) imply that if P2 commits not to enter and P1 makes no
commitment, then sellers in categories 1 and 2 sell on P2, because (209) and (210) hold in this
case. Consequently, if P2 makes no commitment, Lemmas 21 and 24 imply that P1’s profit

is: (i) Θ1H11−F if P1 makes no commitment; and (ii)
Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃11)

2
+(∆̃12)

2
]

4[ 2+γ(n−3 ) ]

if P1 commits not to enter. Condition E ensures that P1 secures more profit by making
no commitment than by committing not to enter if P2 makes no commitment. If P2 com-
mits not to enter, P1 secures more profit by committing not to enter than by making no
commitment. If P1 makes no commitment, Lemmas 21 and 24 imply that P2’s profit is:

(i) Θ2H22 − F if P2 makes no commitment; and (ii)
Θ2n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃21)

2
+(∆̃22)

2
]

4[ 2+γ(n−3 ) ]
if

P2 commits not to enter. Condition E ensures that P2 secures more profit by committing
not to enter than by making no commitment. If P1 commits not to enter, P2 is indifferent
between committing not to enter and making no commitment. Therefore, in equilibrium,
both P1 and P2 commit not to enter, and both sellers in categories 1 and 2 sell on P1, if
Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆22

∆12

]2
)
.

Finally, suppose Θ1

Θ2
∈
(

1,
[

∆21

∆11

]2
)
. Lemmas 26 and (204) imply that sellers in both
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categories 1 and 2 sell on P2, if platforms both make no commitment. Lemma 27, (192)
and (204) imply that if P2 commits not to enter and P1 makes no commitment, then sellers
in categories 1 and 2 sell on P2, because (209) and (210) hold in this case. Consequently,
if P1 makes no commitment, then sellers in both categories 1 and 2 sell on P2. Therefore,
in equilibrium, P1 commits not to enter, and sellers in both categories sell on P1, if Θ1

Θ2
∈(

1,
[

∆21

∆11

]2
)
.

Case I(ii).
[

∆22

∆12

]2

>
[

∆̃21

∆11ξ(γ,n)

]2

.

(198) and (201) imply that:

1 <

[
∆21

∆11

]2

<

[
∆̃21

∆11ξ (γ, n)

]2

<

[
∆22

∆12

]2

<

[
∆̃22

∆12ξ (γ, n)

]2

. (211)

First suppose Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

. Then, in equilibrium, P1 makes no commitment, and
sellers in both categories 1 and 2 sell on P1. The analysis is analogous to that under Case I

when Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

.

Next suppose Θ1

Θ2
∈
([

∆22

∆12

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)
. Then, in equilibrium, P1 makes no com-

mitment whereas P2 commits not to enter, and sellers in category 1 sell on P1 whereas
sellers in category 2 sell on P2. The analysis is analogous to that under Case I when
Θ1

Θ2
∈
([

∆22

∆12

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)
.

Next suppose Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆22

∆12

]2
)
. Lemmas 26 and (211) imply that sellers

in category 1 sell on P1 and sellers in category 2 sell on P2, if platforms both make no
commitment. Lemma 27, (192) and (211) imply that if P2 commits not to enter and P1
makes no commitment, then sellers in category 1 sell on P1 and sellers in category 2 sell on
P2, because (207) and (208) hold. Consequently, if P1 makes no commitment, then sellers
in category 1 sell on P1 and sellers in category 2 sell on P2. If P1 commits not to enter,
then sellers in both categories 1 and 2 sell on P1. Lemmas 21 and 24 imply that P1’s profit

is: (i) Θ1H11−F if P1 makes no commitment; and (ii)
Θ1n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃11)

2
+(∆̃12)

2
]

4[ 2+γ(n−3 ) ]

if P1 commits not to enter. Condition E ensures that P1 secures more profit by making
no commitment than by committing not to enter in this case. Therefore, in equilibrium,
platforms both make no commitment, and sellers in category 1 sell on P1 and sellers in

category 2 sell on P2, if Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆22

∆12

]2
)
.

Next suppose Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆̃21

∆11ξ(γ,n)

]2
)
. Then, in equilibrium, both P1 and P2 commit

not to enter, and both sellers in categories 1 and 2 sell on P1. The analysis is analogous to

that under Case I when Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆̃21

∆11ξ(γ,n)

]2
)
.

83



Finally suppose Θ1

Θ2
∈
(

1,
[

∆21

∆11

]2
)
. Then, in equilibrium, P1 commits not to enter, and

sellers in both categories sell on P1. The analysis is analogous to that under Case I when
Θ1

Θ2
∈
(

1,
[

∆21

∆11

]2
)
.

Case II. Θ1 < Θ2.
Lemma 25 implies that if both platforms commit not to enter, then sellers in both cate-

gories 1 and 2 will sell on P2 because Θ1 < Θ2.
Lemma 27 implies that if P2 commits not to enter and P1 makes no commitment, then

sellers in categories 1 and 2 will sell on P2 because Θ2

Θ1
> 1 and

[
∆11ξ(γ,n)

∆̃21

]2

< 1 and[
∆12ξ(γ,n)

∆̃22

]2

< 1 from (196).
Lemma 26 implies that if platforms both make no commitment, then sellers in both

categories 1 and 2 will sell on P2 because Θ1

Θ2
< 1 and

[
∆2g

∆1g

]2

> 1 (g ∈ {1, 2}) from (204).

(86) and (116) imply that:

∆21

∆̃11

>
∆22

∆̃12

⇔
dS1 − cS1 − γ

[
d2 − cP2

]
dS1 − cS1

>
dS2 − cS2 − γ

[
d2 − cP2

]
dS2 − cS2

⇔ 1−
γ
[
d2 − cP2

]
dS1 − cS1

> 1−
γ
[
d2 − cP2

]
dS2 − cS2

⇔
γ
[
d2 − cP2

]
dS1 − cS1

<
γ
[
d2 − cP2

]
dS2 − cS2

⇔ dS2−cS2 < dS1−cS1.

(212)
(192), (196), and (212) imply that:[

∆22ξ (γ, n)

∆̃12

]2

<

[
∆21ξ (γ, n)

∆̃11

]2

< 1. (213)

First suppose Θ1

Θ2
∈
([

∆21ξ(γ,n)

∆̃11

]2

, 1

)
. Lemma 27 implies that if P1 commits not to

enter and P2 makes no commitment, then sellers in both categories sell on P1. Therefore,
in equilibrium, both P1 and P2 commit not to enter, and sellers in both categories 1 and 2

will sell on P2 if Θ1

Θ2
∈
([

∆21ξ(γ,n)

∆̃11

]2

, 1

)
.

Next suppose Θ1

Θ2
∈
([

∆22ξ(γ,n)

∆̃12

]2

,
[

∆21ξ(γ,n)

∆̃11

]2
)
. Lemma 27 implies that if P1 commits

not to enter and P2 makes no commitment, then sellers in category 2 sell on P1 whereas sellers
in category 1 sell on P2. Therefore, if P2 commits not to enter, sellers in both categories
sell on P2, regardless of P1’s commitment. If P2 makes no commitment, then P1 commits
not to enter, and sellers in category 2 sell on P1 whereas sellers in category 1 sell on P2.
Lemmas 21 and 24 imply that P2’s profit is: (i) Θ2H21−F if P2 makes no commitment; and

(ii)
Θ2n[ 1+γ(n−2 ) ][ 1+γ(n−1 ) ]

[
(∆̃21)

2
+(∆̃22)

2
]

4[ 2+γ(n−3 ) ]
if P2 commits not to enter. Condition E ensures

that P2 secures more profit by making no commitment than by committing not to enter
in this case. Consequently, in equilibrium, P2 makes no commitment whereas P1 commits
not to enter, and sellers in category 2 sell on P1 whereas sellers in category 1 sell on P2 if
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Θ1

Θ2
∈
([

∆22ξ(γ,n)

∆̃12

]2

,
[

∆21ξ(γ,n)

∆̃11

]2
)
.

Finally suppose Θ1

Θ2
<
[

∆22ξ(γ,n)

∆̃12

]2

. Lemma 27 implies that if P1 commits not to enter and
P2 makes no commitment, then sellers in both categories sell on P2. Therefore, sellers in both
categories sell on P2, regardless of platforms’commitments. Consequently, in equilibrium,

P2 makes no commitment, and sellers in both categories sell on P2 if Θ1

Θ2
<
[

∆22ξ(γ,n)

∆̃12

]2

.

In summary, when one platform is suffi ciently stronger than the other platform (i.e.,
Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]
or Θ1

Θ2
<
[

∆22ξ(γ,n)

∆̃12

]2

), sellers in both categories compete with the strong

platform; when one platform is reletively stronger than the other platform (i.e., Θ1

Θ2
∈([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)
or Θ1

Θ2
∈
([

∆22ξ(γ,n)

∆̃12

]2

,
[

∆21ξ(γ,n)

∆̃11

]2
)
), sellers in category 1 com-

pete with the strong platform whereas sellers in category 2 compete with the weak platform
or face no competition from platforms; when two platforms are suffi ciently similar in plat-

form strength (i.e., Θ1

Θ2
∈
([

∆21ξ(γ,n)

∆̃11

]2

,
[

∆̃21

∆11ξ(γ,n)

]2
)
), sellers in both categories face no

competition from platforms. �

Proposition 7. Suppose Assumptions 2 and 3, and Condition E hold. Then increased
platform competition reduces platform-seller competition in the sense that at least sellers in
one category face no competition or reduced competition from platforms in the presence of
platform competition.

Proof. Proposition 5 shows that sellers in both categories compete with the monopoly plat-
form (e.g., P1) in equilibrium.
Case I. The platform in the monopolistic setting faces a weaker platform in the competition
setting (i.e., Θ1 > Θ2).
Proposition 6 shows that: (i) when P1 is suffi ciently stronger than P2, sellers in both

categories compete with P1; (ii) when P1 is reletively stronger than P2, sellers in category 1
compete with P1 whereas sellers in category 2 compete with P2 or face no competition from
platforms; and (iii) when P1 is suffi ciently similar to P2, sellers in both categories face no
competition from platforms.
Case II. The platform in the monopolistic setting faces a stronger platform in the competition
setting (i.e., Θ1 < Θ2).
Proposition 6 shows that: (i) when P2 is suffi ciently stronger than P1, sellers in both

categories compete with P2; (ii) when P2 is reletively stronger than P1, sellers in category 1
compete with P2 whereas sellers in category 2 compete with P1 or face no competition from
platforms; and (iii) when P2 is suffi ciently similar to P1, sellers in both categories face no
competition from platforms.
Compared to the monopolistic platform setting, increased platform competition reduces

downstream seller competition in the sense that at least sellers in one category face no
competition or reduced competition from platforms in the presence of platform competition.
This is the case because assumption 3 ensures that P2 is a weaker seller than P1. �

Lemma 28. Suppose Assumptions 2 and 3, and Condition E hold. Then consumer surplus
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under MP is given by (220) and consumer surplus under PC is given by (221) and (222).

Proof. In the presence of platform entry, the consumer surplus when consuming the product
of Pk and sellers in category g is given by:

CSEkg = dkQ
P−E
kg +dSg [n− 1]QS−E

kg −P P−E
kg QP−E

kg −[n− 1]P S−E
kg QS−E

kg

−1

2

{[
QP−E
kg

]2
+ [n− 1]

[
QS−E
kg

]2
+ 2 γ

[
(n− 1)QP−E

kg QS−E
kg +

(
n−1∑
k=2

(n− k)

)(
QS−E
kg

)2

]}
=
[
dk − P P−E

kg

]
QP−E
kg +[n− 1]

[
dSg − P S−E

kg

]
QS−E
kg

−1

2

{[
QP−E
kg

]2
+ [n− 1]

[
QS−E
kg

]2
+ 2 γ

[
(n− 1)QP−E

kg QS−E
kg +

(n− 1) (n− 2)

2

(
QS−E
kg

)2
]}

=
[
dk − P P−E

kg

]
QP−E
kg +[n− 1]

[
dSg − P S−E

kg

]
QS−E
kg

−1

2

[(
QP−E
kg

)2
+ (n− 1)

(
QS−E
kg

)2
+ 2 γ (n− 1)QP−E

kg QS−E
kg + γ (n− 1) (n− 2)

(
QS−E
kg

)2
]

=
[
dk − P P−E

kg

]
QP−E
kg +[n− 1]

[
dSg − P S−E

kg

]
QS−E
kg

−1

2

{[
QP−E
kg

]2
+ [n− 1] [1 + γ (n− 2)]

[
QS−E
kg

]2
+ 2 γ [n− 1]QP−E

kg QS−E
kg

}
. (214)

(79) implies that:

dk − P P−E
kg = QP−E

kg + γ [n− 1]QS−E
kg ; and

dSg − P S−E
kg = QS−E

kg + γ [n− 2]QS−E
kg + γQP−E

kg . (215)

(214) and (215) imply that:

CSEkg =
[
QP−E
kg + γ (n− 1)QS−E

kg

]
QP−E
kg + [n− 1]

[
QS−E
kg + γ (n− 2)QS−E

kg + γQP−E
kg

]
QS−E
kg

−1

2

{[
QP−E
kg

]2
+ [n− 1] [1 + γ (n− 2)]

[
QS−E
kg

]2
+ 2 γ [n− 1]QP−E

kg QS−E
kg

}
=
[
QP−E
kg

]2
+γ [n− 1]QP−E

kg QS−E
kg +[n− 1]

[
QS−E
kg

]2
+γ [n− 1] [n− 2]

[
QS−E
kg

]2
+γ [n− 1]QP−E

kg QS−E
kg

−1

2

[
QP−E
kg

]2 − 1

2
[n− 1] [1 + γ (n− 2)]

[
QS−E
kg

]2 − γ [n− 1]QP−E
kg QS−E

kg

=
1

2

[
QP−E
kg

]2
+

1

2
[n− 1] [1 + γ (n− 2)]

[
QS−E
kg

]2
+γ [n− 1]QP−E

kg QS−E
kg .

(216)
In the absence of platform entry, the consumer surplus when consuming the product of

sellers in category g on platform Pk is given by:

CSNEkg = ndSgQS−NE
kg − 1

2

[
n
(
QS−NE
kg

)2
+ 2 γ

n−1∑
k=1

(n− k)
(
QS−NE
kg

)2

]
− nP S−NE

kg QS−NE
kg
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= ndSgQS−NE
kg − 1

2

[
n
(
QS−NE
kg

)2
+ 2 γ

n (n− 1)

2

(
QS−NE
kg

)2
]
− nP S−NE

kg QS−NE
kg

= n
[
dSg − P S−NE

kg

]
QS−NE
kg − n

2

[
QS−NE
kg

]2 − γn [n− 1]

2

[
QS−NE
kg

]2
= n

[
dSg − P S−NE

kg

]
QS−NE
kg − n [1 + γ (n− 1)]

2

[
QS−NE
kg

]2
.

(217)
(79) implies that:

dSg − P S−NE
kg = QS−NE

kg + γ [n− 1]QS−NE
kg = [1 + γ (n− 1)]QS−NE

kg . (218)

(214) and (215) imply that:

CSNEkg = n [1 + γ (n− 1)]
[
QS−NE
kg

]2−n [1 + γ (n− 1)]

2

[
QS−NE
kg

]2
=
n [1 + γ (n− 1)]

2

[
QS−NE
kg

]2
.

(219)
Proposition 5 shows that when P1 is the monopoly platform, then (216) implies that the

consumer surplus is:
CSMP = CSE11 + CSE12. (220)

Case I. Θ1 > Θ2.

Proposition 6 shows that when P1 competes with P2 and: (i)
[

∆22

∆12

]2

<
[

∆̃21

∆11ξ(γ,n)

]2

, the
consumer surplus is:

CSPC =


CSE11 + CSE12, if Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

CSE11 + CSNE22 , if Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)

CSNE11 + CSNE12 , if Θ1

Θ2
∈
(

1,
[

∆̃21

∆11ξ(γ,n)

]2
) ;

and (ii)
[

∆22

∆12

]2

>
[

∆̃21

∆11ξ(γ,n)

]2

, the consumer surplus is:

CSPC =



CSE11 + CSE12, if Θ1

Θ2
>
[

∆̃22

∆12ξ(γ,n)

]2

CSE11 + CSNE22 , if Θ1

Θ2
∈
([

∆22

∆12

]2

,
[

∆̃22

∆12ξ(γ,n)

]2
)

CSE11 + CSE22, if Θ1

Θ2
∈
([

∆̃21

∆11ξ(γ,n)

]2

,
[

∆22

∆12

]2
)

CSNE11 + CSNE12 , if Θ1

Θ2
∈
(

1,
[

∆̃21

∆11ξ(γ,n)

]2
)

. (221)

Case II. Θ1 < Θ2.
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Proposition 6 shows that when P1 competes with P2, the comsumer surplus is:

CSPC =


CSNE21 + CSNE22 , if Θ1

Θ2
∈
([

∆21ξ(γ,n)

∆̃11

]2

, 1

)
CSNE12 + CSE21, if Θ1

Θ2
∈
([

∆22ξ(γ,n)

∆̃12

]2

,
[

∆21ξ(γ,n)

∆̃11

]2
)

CSE21 + CSE22, if Θ1

Θ2
<
[

∆22ξ(γ,n)

∆̃12

]2

. � (222)

Figure 1 illustrates numerical solutions for settings where dS2 − cS2 = 5, dS1 − cS1 =
6, d2 − cP2 = 7, d1 − cP1 = 8, γ = 0.5, Θ1

Θ2
∈ [0.1, 10], and n ∈ [2, 100]. The X-axis

represents the number of sellers in each category and the Y-axis represents the platform
strength ratio. Figure 1 demonstrates that when seller entry is taken into account, increased
platform competition can reduce consumer surplus unless the competing platform’s platform
strength is suffi ciently pronounced. Figure 1 also indicates that increased seller competition
slightly reduces this effect.
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Figure 1: Comparison between CS and CSM in the setting of seller com-
petition

Figure 2 illustrates numerical solutions for settings where dS2 − cS2 = 5, dS1 − cS1 = 6,
d2 − cP2 = 7, d1 − cP1 = 8, γ = 0.7, Θ1

Θ2
∈ [0.1, 10], and n ∈ [2, 100].
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Figure 2: Comparison between CS and CSM when γ = 0.7

Figure 3 illustrates numerical solutions for settings where dS2 − cS2 = 5, dS1 − cS1 = 6,
d2 − cP2 = 7, d1 − cP1 = 8, γ = 0.3, Θ1

Θ2
∈ [0.1, 10], and n ∈ [2, 100].

3 Endogenous platform strength

In this section, I consider the case where platform strength is endogenised. I consider
a game in which Pi chooses whether to invest K to increase its platform strength from
ΘL to ΘH (ΘL < ΘH). Then platforms simultaneously choose to either commit not to act
as sellers or make no such commitment. After the platform strengths and commitments
are specified, S1 and S2 choose the platform on which they will sell (simultaneously and
independently). Next, a platform that made no commitment will make its entry decision
(i.e., whether to enter and which market to enter). Then P1 and P2 simultaneously set
their per-unit commissions. Finally, each active seller sets its profit-maximizing price for its
product.

Condition 5. K < min{ΘH [Mk1 +Mk2]− 2F − ΘL[ ∆̃kj ]
2

8 bSj
,

ΘH[ ∆̃k2 ]
2

8 bS2
− ΘL[ ∆̃k2 ]

2

8 bS2
, ΘHMk1−

F − ΘL[ ∆̃k1 ]
2

8 bS1
}.

Proposition 8. Suppose strength enhancement is feasible (Condition 5 holds). In the plat-
form competition setting, in equilibrium, both P1 and P2 invest to increase its platform
strength from ΘL to ΘH , both platforms commit not to enter, and each seller is indifferent
between selling on P1 and selling on P2.
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Figure 3: Comparison between CS and CSM when γ = 0.3

Proof. Suppose Condition 5 holds.
Case I. ΘH

ΘL
> φ2 or

ΘH
ΘL
∈ (1, φ1).

If Pi invests K to increase its platform strength from ΘL to ΘH , Proposition 2 implies
that both S1 and S2 sell on Pi if Pk (i, k ∈ {1, 2}, i 6= k) does not invest, and each seller is
indifferent between selling on Pi and selling on Pk if Pk invests K to increase its platform
strength from ΘL to ΘH . Therefore, If Pi invests, then Pk’s best response is to invest.
If Pi does not invest K to increase its platform strength from ΘL to ΘH , Proposition 2

implies that both S1 and S2 sell on Pk if Pk (i, k ∈ {1, 2}, i 6= k) invests K to increase its
platform strength from ΘL to ΘH , and each seller is indifferent between selling on Pi and
selling on Pk if Pk does not invest. Therefore, if Pi does not invest, Lemmas 3 and 6, and
Proposition 2 imply that Pk’s profit is: (i) ΘH [Mk1 +Mk2]− 2F −K if Pk invests; and (ii)
ΘL[ ∆̃kj ]

2

8 bSj
if Pk does not invest. Condition 5 implies that if Pi does not invest, then Pk’s best

response is to invest.
Therefore, in equilibrium, both P1 and P2 invest to increase its platform strength from

ΘL to ΘH , both platforms commit not to enter, and each seller is indifferent between selling
on P1 and selling on P2.
Case II. ΘH

ΘL
∈ (φ1, φ2).

If P2 invests to increase its platform strength from ΘL to ΘH , Proposition 2 implies that
S1 sells on P2 whereas S2 sells on P1 if P1 does not invest, and each seller is indifferent
between selling on P1 and selling on P2 if P1 invests. Proposition 2 also implies that P1
commits not to enter, regardless of its investment decision. Therefore, if P2 invests, Lemma

3 and Proposition 2 imply that P1’s profit is: (i)
ΘL[ ∆̃12 ]

2

8 bS2
if P1 does not invest; and (ii)
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ΘH[ ∆̃12 ]
2

8 bS2
−K if P1 invests.1 Condition 5 ensures that

ΘH[ ∆̃12 ]
2

8 bS2
−K >

ΘL[ ∆̃12 ]
2

8 bS2
. Therefore,

if P2 invests, then P1 invests.
If P1 invests to increase its platform strength from ΘL to ΘH , Proposition 2 implies that

S1 sells on P1 whereas S2 sells on P2 if P2 does not invest, and each seller is indifferent
between selling on P1 and selling on P2 if P2 invests. Proposition 2 also implies that P2
commits not to enter, regardless of its investment decision. Therefore, if P1 invests, Lemma

3 and Proposition 2 imply that P2’s profit is: (i)
ΘL[ ∆̃22 ]

2

8 bS2
if P2 does not invest; and (ii)

ΘH[ ∆̃22 ]
2

8 bS2
− K if P2 invests. (13) and Condition 5 ensures that

ΘH[ ∆̃22 ]
2

8 bS2
− K >

ΘL[ ∆̃22 ]
2

8 bS2
.

Therefore, if P1 invests, then P2 invests.
If P2 does not invest to increase its platform strength from ΘL to ΘH , Proposition 2

implies that S1 sells on P1 whereas S2 sells on P2 if P1 invests, and each seller is indifferent
between selling on P1 and selling on P2 if P1 does not invest. Proposition 2 also implies
that P1 makes no commitment if P1 invests whereas P1 commits not to enter if P1 does not
invest. Therefore, if P2 does not invest, Lemmas 3 and 6, and Proposition 2 imply that P1’s

profit is: (i) ΘHM11−F −K if P1 invests; and (ii)
ΘL[ ∆̃11 ]

2

8 bS1
if P1 does not invest. Condition

5 ensures that ΘHM11−F−K >
ΘL[ ∆̃11 ]

2

8 bS1
. Therefore, if P2 does not invest, then P1 invests.

If P1 does not invest to increase its platform strength from ΘL to ΘH , Proposition 2
implies that S1 sells on P2 whereas S2 sells on P1 if P2 invests, and each seller is indifferent
between selling on P1 and selling on P2 if P2 does not invest. Proposition 2 also implies
that P2 makes no commitment if P2 invests whereas P2 commits not to enter if P2 does not
invest. Therefore, if P1 does not invest, Lemmas 3 and 6, and Proposition 2 imply that P2’s

profit is: (i) ΘHM21−F −K if P2 invests; and (ii)
ΘL[ ∆̃21 ]

2

8 bS1
if P2 does not invest. Condition

5 ensures that ΘHM21−F−K >
ΘL[ ∆̃21 ]

2

8 bS1
. Therefore, if P1 does not invest, then P2 invests.

Consequently, in equilibrium, both P1 and P2 invest to increase its platform strength
from ΘL to ΘH , both platforms commit not to enter, and each seller is indifferent between
selling on P1 and selling on P2. �

In the monopolistic platform setting, the platform (e.g., P1) does not invest to increase its
strength in equilibrium because both sellers will sell on the platform regardless. Therefore,
Proposition 1 shows that the consumer surplus in the monopolistic platform setting is:

CSM = ΘL [ς11 + ς12] , (223)

where ςkj is given by (8).
(13) and Proposition 8 imply that the consumer surplus in the platform competition

setting is:

CS =
ΘH

2 bS1

[
∆̃11

4

]2

+
ΘH

2 bS2

[
∆̃22

4

]2

.

1This is the case because ∆̃11 = ∆̃12 and bS1 = bS2 .
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Figure 4 illustrates numerical solutions for settings where for j ∈ {1, 2}, ηj = 0.4, βSj =

βPj = 0.5 (so that Ωj ∈ (0, 1)), αj = 10, cP1 = 1, cP2 = 2, cS1 = 3, cS2 = 4, ΘH
ΘL
∈ (1, 10], and

θ ∈ [0.1, 10].2 The X-axis represents relative popularity: θ < 1 indicates that the third-party
seller’s product is more popular, θ > 1 indicates that the platform’s product is more popular,
and θ = 1 indicates equal popularity. The Y-axis represents the potential increase in strength
a platform can achieve through investment. In this setting, platforms can replicate sellers’
products at a cost lower than the sellers’production costs (i.e., cPk < cSj ). Additionally, the
incumbent platform can imitate the seller’s product at a lower cost than the entrant platform
(i.e., cP1 < cP2 ).
Figure 4 demonstrates that when endogenous platform strength is taken into account,

increased platform competition can reduce consumer surplus unless platforms can increase
their platform strengths significantly (i.e,. ΘH

ΘL
is suffi ciently pronouned.)
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Figure 4: Comparison between CS and CSM in the setting of endogenous
platform strength

Figure 5 illustrates numerical solutions for settings where for j ∈ {1, 2}, ηj = 0.4, βSj =

βPj = 0.5 (so that Ωj ∈ (0, 1)), αj = 10, cP1 = 5, cP2 = 6, cS1 = 3, cS2 = 4, ΘH
ΘL
∈ (1, 10],

and θ ∈ [0.1, 10]. In this setting, platforms can replicate sellers’products at a cost higher
than the sellers’production costs (i.e., cPk > cSj ). Additionally, the incumbent platform can

2To align with the main analysis, the parameters ηj , β
S
j , β

P
j , αj , c

P
j , c

S
j are chosen such that Ωj ∈ (0, 1),

cS2 > cS1 , ∆kj > 0, ∆kj > 0, and ∆̃kj > 0 for all values of θ ∈ [0.1, 10].
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imitate the seller’s product at a lower cost than the entrant platform (i.e., cP1 < cP2 ).
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Figure 5: Comparison between CS and CSM where cPk > cSj

Figure 6 illustrates numerical solutions for settings where for j ∈ {1, 2}, ηj = 0.4, βSj =

βPj = 0.5 (so that Ωj ∈ (0, 1)), αj = 10, cP1 = 2, cP2 = 1, cS1 = 3, cS2 = 4, ΘH
ΘL
∈ (1, 10], and

θ ∈ [0.1, 10]. In this setting, platforms can replicate sellers’products at a cost lower than
the sellers’production costs (i.e., cPk < cSj ). Additionally, the entrant platform can imitate
the seller’s product at a lower cost than the incumbent platform (i.e., cP2 < cP1 ).

93



Consumer Surplus Comparison

0.1 2 5 8 10
 (Relative Popularity)

1

2

3

4

5

6

7

8

9

10

H
/

L
(P

la
tfo

rm
S

tre
ng

th
R

at
io

)

CS < CSM

CS > CSM

Figure 6: Comparison between CS and CSM where cP2 < cP1
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I further explore the scenario where platforms compete on platform strength in the initial
state, i.e., each platform endogenously decides its platform strength before committing to
their selling capabilities. Specifically, I consider a game in which platforms simultaneously
choose their platform strengths. Then platforms simultaneously choose to either commit not
to act as sellers or make no such commitment. After the platform strengths and commitments
are specified, S1 and S2 choose the platform on which they will sell (simultaneously and
independently). Next, a platform that made no commitment will make its entry decision
(i.e., whether to enter and which market to enter). Then P1 and P2 simultaneously set
their per-unit commissions. Finally, each active seller sets its profit-maximizing price for its
product.

Proposition 2 suggests that in equilibrium, both platforms opt for a higher level of plat-
form strength compared to what a monopolistic platform would choose. This occurs because
increased platform competition compels each platform to increase its strength to attract
sellers. If platforms were to choose differing strengths, the one with the lower strength
would be motivated to enhance it to attract more sellers. Therefore, each platform matches
the other’s strength in equilibrium. Furthermore, Proposition 2 indicates that platforms
commit not to enter the seller market when they have equivalent platform strengths. Propo-
sition 2, (233), and (223) imply that consumer surplus under Monopoly Platform (MP)
is CSM = Θ [ ςP1 + ςP2 ], while consumer surplus under Platform Competition (PC) is

CS = Θ̂

 (
∆̃k1

4

)2

2βS1 [ 1−Ω1 ]
+

(
∆̃i2

4

)2

2βS2 [ 1−Ω2 ]

, where ςkj is defined in (8), Θ represents the strength level
chosen by the monopoly platform under MP, Θ̂ represents the strength level chosen by each
platforms under PC, and Θ̂ > Θ. Therefore, CS ≶ CSM if Θ̂

Θ
≶ ςP1+ςP2[

∆̃k1
4

]2

2 βS1 [ 1−Ω1 ]
+

[
∆̃i2

4

]2

2 βS2 [ 1−Ω2 ]

, where Θ̂
Θ

represents the consumers’benefits from increased platform strength, and ςP1+ςP2[
∆̃k1

4

]2

2 βS1 [ 1−Ω1 ]
+

[
∆̃i2

4

]2

2 βS2 [ 1−Ω2 ]

indicates the consumers’loss from higher prices due to reduced downstream competition.
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4 Discriminating commitments

In this section, I consider the case where platforms can make discriminatory commit-
ments, i.e., a platform might commit to not entering one seller’s market while making no
such promise to another seller.

Proposition 9. Suppose platform entry is feasible (Condition FS holds), a third-party seller
benefits more from no competition than from reduced competition (Assumption BC holds),
and platforms can make discriminating commitments. Further suppose Θ1

Θ2
≥ 1 and cP1j < cP2j.

Then in equilibrium: (i) if Θ1

Θ2
> φ2, P1 makes no commitment to both sellers, and both S1

and S2 sell on P1; (ii) if Θ1

Θ2
∈ (φ1, φ2 ), P1 commits not to enter S2’s market but makes

no commitment for S1, and both sellers sell on P1; (iii) if Θ1

Θ2
∈ ( 1, φ1 ), P1 commits not to

enter both sellers’markets, and both S1 and S2 sell on P1; and (iv) if Θ1

Θ2
= 1, both platforms

commit not to enter either seller’s market, and each seller is indifferent between selling on
P1 and selling on P2.

Proof. Condition FS ensures that each platform enters each seller’s market if the platform
makes no commitment. Since S1 and S2 sell independent products, S1’s choice of platform
is independent of S2’s choice of platform.

Case I. cP1j < cP2j.

It can be shown that:

φ2 > φ1 >

[
∆22

∆12

]2

>

[
∆21

∆11

]2

> 1 if cP1j < cP2j. (224)

First suppose Θ1

Θ2
> φ2. Lemmas 7 - 10 and (224) imply that both S1 and S2 sells on

P1, regardless of the platforms’commitments. Condition FS ensures P1 enters each seller’s
market. Therefore, Lemmas 3 and 6 imply that: (i) P1’s profit is Θ1M11 − F + Θ1M12 − F
if P1 makes no commitment; and (ii) P1’s profit is

Θ1[ ∆̃11 ]
2

8 bS1
+

Θ1[ ∆̃12 ]
2

8 bS2
if P1 commits not

to enter. Condition FS ensures that Θ1M1j − F >
Θ1[ ∆̃1j ]

2

8 bSj
, i.e., P1 secures more profit

by making no commitment than by committing not to enter. Therefore, in equilibrium, P1
makes no commitment to both sellers, and both S1 and S2 sell on P1 if Θ1

Θ2
> φ2.

Next suppose Θ1

Θ2
∈ (φ1, φ2 ). Lemmas 7 - 10 and (224) imply that S1 sells on P1,

regardless of the platforms’commitments. Condition FS and Lemmas 3 and 6 imply that P1
secures more profit by making no commitment to S1 than by committing not to enter S1’s
market. If P2 makes no commitment, Lemmas 8, 9 and (224) imply that S2 sells on P1. If P2
commits not to enter, Lemmas 7 and 10 imply that S2: (i) sells on P1 if P1 commits not to
enter; and (ii) sells on P2 if P1 makes no commitment. Therefore, P1 secures more profit by
committing not to enter S2’s market than by making no commitment to S2. Consequently,
in equilibrium, P1 makes no commitment to S1 but commits to not entering S2’s market,
and both sellers sell on P1 if Θ1

Θ2
∈ (φ1, φ2 ).
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Next suppose Θ1

Θ2
∈
([

∆22

∆12

]2

, φ1

)
. If P2 makes no commitment, Lemmas 8, 9 and (224)

imply that S1 and S2 both sell on P1, regardless of P1’s commitment. Condition FS and
Lemmas 3 and 6 imply that P1 secures more profit by making no commitment to both sellers
than by committing not to enter each seller’s market in this case. If P2 commits not to enter,
Lemmas 7, 10 and (224) imply that Sj (j ∈ {1, 2}): (i) sells on P1 if P1 commits not to enter
Sj’s market; and (ii) sells on P2 if P1 makes no commitment to Sj. Therefore, P1 secures
more profit by committing not to enter Sj’s market than by making no commitment to Sj
in this case. If P1 commits not to enter, Lemmas 7, 9 and (224) imply that both S1 and
S2 sell on P1, regardless of P2’s commitment. If P1 makes no commitment, Lemmas 8, 10,
and (224) imply that Sj (j ∈ {1, 2}): (i) sells on P1 if P2 makes no commitment to Sj; and
(ii) sells on P2 if P2 commits not to enter Sj’s market. Therefore, P2 secures more profit
by committing not to enter Sj’s market than by making no commitment to Sj in this case.
Consequently, in equilibrium, both P1 and P2 commit not to enter each seller’s market, and

both S1 and S2 sell on P1, if Θ1

Θ2
∈
([

∆22

∆12

]2

, φ1

)
.

Next suppose Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆22

∆12

]2
)
. If P2 makes no commitment, Lemmas 8, 9, and

(224) imply that S1 sells on P1 and S2: (i) sells on P1 if P1 commits not to enter; and (ii)
sells on P2 if P1 makes no commitment. Condition FS and Lemmas 3 and 6 imply that
P1 makes no commitment to S1 but commits not to enter S2’s market in this case. If P2
commits not to enter, Lemmas 7, 10, and (224) imply that Sj (j ∈ {1, 2}): (i) sells on P1
if P1 commits not to enter; and (ii) sells on P2 if P1 makes no commitment. Therefore, P1
commits not to enter each seller’s market in this case. If P1 commits not to enter, Lemmas
7, 9, and (224) imply that both S1 and S2 sell on P1, regardless of P2’s commitment. If
P1 makes no commitment, Lemmas 8, 10, and (224) imply that S2 sells on P2 and S1: (i)
sells on P1 if P2 makes no commitment; and (ii) sells on P2 if P2 commits not to enter.
Therefore, P2 makes no commitment to S2 but commits not to enter S1’s market in this case.
Consequently, in equilibrium, both P1 and P2 commit not to enter each seller’s market, and

both S1 and S2 sell on P1, if Θ1

Θ2
∈
([

∆21

∆11

]2

,
[

∆22

∆12

]2
)
.

Next suppose Θ1

Θ2
<
[

∆21

∆11

]2

. If P2 makes no commitment, Lemmas 8, 9, and (224) imply

that Sj (j ∈ {1, 2}): (i) sells on P1 if P1 commits not to enter; and (ii) sells on P2 if P1
makes no commitment. Therefore, P1 commits not to enter each seller’s market in this
case. If P2 commits not to enter, Lemmas 7, 10, and (224) imply that Sj (j ∈ {1, 2}): (i)
sells on P1 if P1 commits not to enter; and (ii) sells on P2 if P1 makes no commitment.
Therefore, P1 commits not to enter each seller’s market in this case. If P1 commits not
to enter, Lemmas 7, 9, and (224) imply that both S1 and S2 sell on P1, regardless of P2’s
commitment. Consequently, in equilibrium, P1 commits not to enter each seller’s market,

and both S1 and S2 sell on P1, if Θ1

Θ2
<
[

∆21

∆11

]2

.

Finally, suppose Θ1

Θ2
= 1. Lemma 7 implies that if both platforms commit not to enter

Sj’s market, then Sj (j ∈ {1, 2}) is indifferent between selling on P1 and selling on P2.
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Lemma 8 implies that if platforms both make no commitment to Sj, then Sj sells on P2.
Lemma 9 implies that if P1 commits not to enter Sj’s market and P2 makes no commitment
to Sj, then Sj sells on P1. Lemma 10 implies that if P1 makes no commitment to Sj and
P2 commits to no entry Sj’s market, then Sj sells on P2. If P2 makes no commitment, Sj:
(i) sells on P1 if P1 commits not to enter Sj’s market; and (ii) sells on P2 if P1 makes no
commitment to Sj. If P2 commits not to enter Sj’s market, Sj: (i) is indifferent between
selling on P1 and selling on P2 if P1 commits not to enter Sj’s market; and (ii) sells on P2 if
P1 makes no commitment to Sj. If P1 commits not to enter Sj’s market, Sj: (i) is indifferent
between selling on P1 and selling on P2 if P2 commits not to enter Sj’s market; and (ii)
sells on P1 if P2 makes no commitment to Sj. Consequently, in equilibrium, both platforms
commit not to enter each seller’s market, and each seller is indifferent between selling on P1
and selling on P2, if Θ1

Θ2
= 1. �

Proposition 10. Suppose platform entry is feasible (Condition FS holds), a third-party
seller benefits more from no competition than from reduced competition (Assumption BC
holds), and platforms can make discriminating commitments. Further suppose P faces a

competing platform P̃ that is a weaker seller than P (i.e.,
c̃Pj
cPj
> 1). Then CS < CSM unless

P̃’s relative platform strength is suffi ciently pronounced.

Proof. (1) implies that if Sj sells on Pk and competes against Pk (j, k ∈ {1, 2}), then:

pSkj =
qPkj
ηj
− θj αj

ηj
+
βPj p

P
kj

ηj
. (225)

(2) and (225) imply that:

pPkj =
ηj q

S
kj + βSj q

P
kj − αj

[
ηj + βSj θj

][
ηj
]2 − βSj βPj . (226)

(225) and (226) imply that:

pSkj =
ηj q

P
kj + βPj q

S
kj − αj

[
θj ηj + βPj

][
ηj
]2 − βSj βPj . (227)

Lemma 6 implies that if Sj competes against Pk, then:

q∗Skj =
Q∗Skj
Θk

=
[ 2 + Ωj ] ∆kj

8 + Ωj

and q∗Pkj =
Q∗Pkj
Θk

=
∆kj

2
+
ηj [ 2 + Ωj ] ∆kj

2βSj [ 8 + Ωj ]
. (228)

(226), (227), and (228) imply that if S1 competes against Pk and S2 competes against
Pi (k, i ∈ {1, 2}), then consumer surplus is:

CS = Θk ςk1 + Θi ς i2, (229)

where for j ∈ {1, 2}, ςkj is given by (8).
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It can be shown that:
∂ςkj
∂cPkj

< 0. (230)

(3) implies that if Sj sells on Pk (j, k ∈ {1, 2}) and faces no competition, then:

qSkj = Aj − bSj pSkj ⇔ pSkj =
Aj
bSj
−
qSkj
bSj
. (231)

Lemma 3 implies that if Sj sells on Pk (k, i ∈ {1, 2}) and faces no competition, then:

q∗Skj =
Q∗Sj
Θk

=
∆̃kj

4
. (232)

(231) and (232) imply that if S1 sells on Pk, S2 sells on Pi (k, i ∈ {1, 2}), and each seller
faces no competition, then consumer surplus is:

CS =
Θk

2 βS1 [ 1− Ω1 ]

[
∆̃k1

4

]2

+
Θi

2 βS2 [ 1− Ω2 ]

[
∆̃i2

4

]2

. (233)

(226), (227), (228), (8), (231), and (232) imply that if S1 competes against Pk and S2
sells on Pi and faces no competition (k, i ∈ {1, 2}), then consumer surplus is:

CS = Θk ςk1 +
Θi

2 βS2 [ 1− Ω2 ]

[
∆̃i2

4

]2

. (234)

(12) and (8) imply that:

ςkj >
1

2 βSj [ 1− Ωj ]

[
∆̃kj

4

]2

. (235)

Proposition 1 implies that in the benchmark setting (MP), the monopoly platform makes
no commitment to either sellers in equilibrium. As a result, each seller competes against P
under MP. Therefore, (229) implies that:

CSM = Θ ςP1 + Θ ςP2. (236)

First suppose P faces a competing platform P̃ that is a stronger platform (i.e., Θ̃
Θ
> 1)

under PC, where Θ̃ denotes P̃’s platform strength. (230) and
c̃Pj
cPj
> 1 imply that:

ςPj
ς P̃ j

> 1. (237)

Case I. Θ̃
Θ
> max

{
ςP1+ ςP2

ς
P̃1

+ς
P̃2
, φP̃2

}
.
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Because Θ̃
Θ
> φP̃2, Proposition 9 implies that each seller competes against P̃ under PC.

Therefore, (229) implies that:
CS = Θ̃ ς P̃1 + Θ̃ ς P̃2. (238)

Because Θ̃
Θ
> ςP1+ ςP2

ς
P̃1

+ς
P̃2
, Θ̃ ς P̃1 + Θ̃ ς P̃2 > Θ ςP1 + Θ ςP2. Therefore, (236) and (238) imply

that CS > CSM in this case.

Case II. Θ̃
Θ
∈
(

1,min
{
ςP1+ ςP2

ς
P̃1

+ς
P̃2
, φP̃2

})
.

First suppose φP̃1 <
ςP1+ ςP2

ς
P̃1

+ς
P̃2
. If Θ̃

Θ
∈
(
φP̃1,min

{
ςP1+ ςP2

ς
P̃1

+ς
P̃2
, φP̃2

})
, then Θ̃

Θ
∈
(
φP̃1, φP̃2

)
.

Proposition 9 implies that S1 competes against P̃ whereas S2 sells on P̃ and faces no com-
petition under PC. Therefore, (234) implies that:

CS = Θ̃ ς P̃1 +
Θ̃

2 βS2 [ 1− Ω2 ]

[
∆̃P̃2

4

]2

. (239)

Because Θ̃
Θ
< ςP1+ ςP2

ς
P̃1

+ς
P̃2
, Θ̃ ς P̃1 + Θ̃ ς P̃2 < Θ ςP1 + Θ ςP2. (235) implies that 1

2βS2 [ 1−Ω2 ]

[
∆̃
P̃2

4

]2

<

ς P̃2. Therefore, (236) and (239) imply that CS < CSM in this case. If Θ̃
Θ
∈
(

1, φP̃1

)
, Propo-

sition 9 implies that each seller sells on P̃ and faces no competition under PC. Therefore,
(233) implies that:

CS =
Θ̃

2 βS1 [ 1− Ω1 ]

[
∆̃P̃1

4

]2

+
Θ̃

2 βS2 [ 1− Ω2 ]

[
∆̃P̃2

4

]2

. (240)

(235) implies that Θ̃
2βSj [ 1−Ωj ]

[
∆̃
P̃ j

4

]2

< Θ̃ ς P̃ j. Because
Θ̃
Θ
< ςP1+ ςP2

ς
P̃1

+ς
P̃2
, Θ̃ ς P̃1 + Θ̃ ς P̃2 < Θ ςP1 +

Θ ςP2. Therefore, (236) and (240) imply that CS < CSM in this case.

Next suppose φP̃1 ≥
ςP1+ ςP2

ς
P̃1

+ς
P̃2
. It can be shown that φP̃2 >

ςP1+ ςP2

ς
P̃1

+ς
P̃2
. Therefore,min

{
ςP1+ ςP2

ς
P̃1

+ς
P̃2
, φP̃2

}
=

ςP1+ ςP2

ς
P̃1

+ς
P̃2
. Because Θ̃

Θ
∈
(

1, ςP1+ ςP2

ς
P̃1

+ς
P̃2

)
, Θ̃

Θ
∈
(

1, φP̃1

)
. Proposition 9 implies that each seller

sells on P̃ and faces no competition under PC. Therefore, consumer surplus is given by (240).
Therefore, (236) and (240) imply that CS < CSM in this case. Next suppose P faces a sym-
metric competing platform P̃ (i.e., Θ̃

Θ
= 1) under PC. Proposition 9 implies that each seller is

indifferent between selling on P and selling on P̃ and each seller faces no competition under
PC. Therefore, (233) implies that:

CS =
1

2

Θ̃

2 βS1 [ 1− Ω1 ]

[
∆̃P̃1

4

]2

+
1

2

Θ

2 βS1 [ 1− Ω1 ]

[
∆̃P1

4

]2

+
1

2

Θ̃

2 βS2 [ 1− Ω2 ]

[
∆̃P̃2

4

]2

+
1

2

Θ

2 βS2 [ 1− Ω2 ]

[
∆̃P2

4

]2

. (241)
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(235) implies that Θ
2βSj [ 1−Ωj ]

[
∆̃Pj

4

]2

< Θ ςPj and Θ̃
2βSj [ 1−Ωj ]

[
∆̃
P̃ j

4

]2

< Θ̃ ς P̃ j. Because
Θ̃
Θ

= 1,

(241) implies that

CS <
1

2
Θ̃ ς P̃1 +

1

2
Θ ςP1 +

1

2
Θ̃ ς P̃2 +

1

2
Θ ςP2 =

1

2
Θ
[
ς P̃1 + ςP1 + ς P̃2 + ςP2

]
<

1

2
Θ [ςP1 + ςP1 + ςP2 + ςP2] = Θ ςP1 + Θ ςP2 = CSM . (242)

The first inequality in (242) reflects (237) and the last inequality in (242) reflects (236).

Finally, suppose P faces a competing platform P̃ that is a weaker platform (i.e., Θ̃
Θ
< 1)

under PC.

Case I. Θ̃
Θ
∈
(

1
φP1

, 1
)
.

In this case, Θ

Θ̃
∈ ( 1, φ1 ). Proposition 9 implies that each seller sells on P and faces no

competition under PC. Therefore, (233) implies that:

CS =
Θ

2 βS1 [ 1− Ω1 ]

[
∆̃P1

4

]2

+
Θ

2 βS2 [ 1− Ω2 ]

[
∆̃P2

4

]2

. (243)

(235) implies that 1
2βSj [ 1−Ωj ]

[
∆̃Pj

4

]2

< ςPj for j ∈ {1, 2}. Therefore, (236) and (243)
imply that CS < CSM in this case.

Case II. Θ̃
Θ
∈
(

1
φP2

, 1
φP1

)
.

In this case, Θ

Θ̃
∈ (φ1, φ2 ). Proposition 9 implies that S1 competes against P whereas S2

sells on P and faces no competition under PC. Therefore, (234) implies that:

CS = Θ ςP1 +
Θ

2 βS2 [ 1− Ω2 ]

[
∆̃P2

4

]2

. (244)

Therefore, (235), (236), and (244) imply that CS < CSM in this case. �
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