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Abstract

This paper studies a stochastic dynamic game of regulatory price setting with par-
tial commitment. A regulated firm makes investments each period that stochastically
reduce its marginal costs. The infinite horizon over which the firm and the regulator
interact is divided into regulatory cycles that last for T-periods. At the beginning of a
cycle, the regulator commits to a T-period schedule of access prices and a lump-sum
transfer to maximize a weighted welfare function, subject to the firm’s participation
constraint. It cannot, however, commit to schedules for subsequent regulatory cycles.
Regulatory lag and access prices each affect the firm’s investment but in different ways.
Investment in any period of the cycle (except the last) decreases in the variable access
charges in all subsequent periods of the cycle (the "Arrow effect"). Recognizing this,
the regulator distorts the schedule of variable access charges downward relative to what
it would choose if it maximized welfare within the cycle. The optimal variable access
charge is less than the static-first price corresponding to the expected marginal cost for
that period. Regulatory lag induces an additional source of static inefficiency besides
the traditional one (prices within a cycle not tailored to changes in actual productiv-
ity). Computational analysis reveals that as inducements to investment, regulatory
lag and access prices are usually substitutes rather than complements. The regulator
prefers a longer lag to a shorter lag except for extreme parameterizations. However,
there are diminishing returns to regulatory lag, with most of the gains achieved with
lags no greater than 5 to 6 years.

1 Introduction

In the 1980s and 1990s, as countries around the world privatized or deregulated vital in-
frastructure such as railroads, airports, and telecommunications systems, an elegant and
powerful mechanism for regulating natural monopoly firms emerged: price cap regulation
(Littlechild 1983, Beesley and Littlechild 1989, Cabral and Riordan, 1989, Brennan, 1989,
Linhart and Radner 1992, Armstrong, Cowan, and Vickers 1994). Price cap regulation has
two distinct economic features: a fixed length of time between regulatory reviews—regulatory
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lag—and a schedule of price caps that decline in real terms—the X-factor.! Regulatory lag
changes the nature of the regulatory interaction from a cost-plus contract to a fixed-price
price contract, and in so doing it strengthens incentives for cost efficiency, an insight that
emerges from both the literature on rate of return regulation (Baumol and Klevorick 1970,
Bailey 1974) and the mechanism design literature (e.g., Laffont and Tirole, 1984, 1993, and
Cowan 2002). The X-factor can ensure that the firm shares some or all of the benefits from
improved efficiency with consumers, an insight comes from the literature on non-Bayesian
regulatory mechanisms (Vogelsang and Finsinger 1979, Vogelsang, 1989).

This paper studies a stochastic dynamic game of regulatory price setting in which reg-
ulatory lag and the price schedule play prominent roles in motivating a firm to make
productivity-enhancing investments. Our model consists of a regulated network firm that
provides access to bottleneck infrastructure and a regulator that sets the price of access,
which is paid by downstream operating firms that provide a service to end consumers.? The
regulated firm makes investments each period that stochastically improve the productivity of
its network and reduce its marginal costs. The regulator perceives that it is in a continuing
relationship with the firm over the infinite horizon. It is an active player in the game that
seeks to maximize expected social welfare, subject to satisfying the network firm’s partici-
pation constraint. The horizon over which the firm and the regulator interact is divided into
regulatory cycles that last for T-periods. Prior to the beginning of a new regulatory cycle,
the regulator reviews the firm’s operating capabilities and verifies its productivity. Based
on this verified productivity, the regulator commits to a T-period schedule that specifies a
price for each period of the cycle. This schedule is an analogous to the choice of an X-factor
in price cap regulation.?

Our paper makes four contributions to the literature on price cap regulation. First, we
highlight that while regulatory lag and the schedule of access prices both create incentives
for more investment, they work differently. For the first 7' — 1 periods of the regulatory
cycle, the firm effectively faces a fixed-price contract, while in period 7' it faces a cost-plus
contract. In the first 7'— 1 periods, therefore, the interests of the regulator and the regulated
firm are fully aligned when it comes to investment: marginal social welfare from increasing
investment is the same as the marginal expected profit of the firm.* A longer regulatory lag
is valuable to the regulator because it lengthens the period of full alignment.

The access charges, by contrast, directly increase the return on productivity-enhancing
effort because the benefits of cost-reducing investment in period ¢ are magnified when the
firm produces more in the remaining periods t 4+ 1,...,T of the regulatory cycle. However,
cost-reduction in the current regulatory cycle is not the reason the regulator uses the access
charges as an incentive device. If the regulator’s horizon was limited to the current cycle, it

!One could argue that price cap regulation had a third distinctive feature: delegation of pricing decisions
to the regulated firm so long as it adheres to the cap, i.e., pricing discretion. However, pricing discretion is
not necessarily a feature of all applications of price cap regulation, and it is not necessarily the case that it
is welfare-optimal for the regulator, even when the firm has hidden information. See Armstrong and Vickers
(2000) or Armstrong and Sappington (2007) for extensive discussion of pricing discretion.

2A special case of our model is a traditional regulatory pricing setting in which the network firm is
vertically integrated and sells to end consumers directly.

3The price schedule is not precisely the same as an X-factor because the schedule specifies the access prices
themselves, not caps. Moreover, the prices in the schedule need not change at a constant percentage rate.
Still, the price adjustments in the tariff schedule partly reflect expected reductions in marginal costs over
time due to the firm’s investments, and thus, like X-factors in price cap regulation, they share prospective
gains in productivity with consumers.

4However, they are not aligned when it comes to the access tariff because the regulator’s objective function
is social surplus, while the regulated firm cares only about its own discounted profit.



would not need to distort the access prices to create additional investment incentives. Nor
would it need to distort prices if regulatory lag was infinite. In both instances—which have
the common feature that the regulator and the firm operate with the same time horizon—
the marginal investment incentives of the firm and regulator would be fully aligned. The
use of the access prices as an incentive device arises when the regulator recognizes that the
benefits of cost-reducing investment in the current cycle accrue to future cycles, while the
firm (because the expected present value of its profit is reset to zero at the beginning of each
new cycle) internalizes investment benefits only within a cycle. Our model thus highlights an
aspect of regulation that has been underemphasized in the literature on price caps: linkages
across regulatory reviews and the benefits of designing current policies (including X-factors)
that can improve society’s position for future reviews.

Second, we show that the use of a price schedule as an incentive device worsens the tra-
ditional trade-off between static efficiency and dynamic efficiency that arises under price cap
regulation. (That is, regulatory lag encourages investment, but it prevents price from being
tailored to the changes in productivity that result from greater investment.) That trade-off
arises in our model, but we show that there is an additional source of static inefficiency. Even
if the firm’s actual productivity equaled its expected productivity in a particular period of
the regulatory cycle, the price, which is distorted to encourage more investment, would still
be less than the one that maximizes welfare in that period. This worsens static inefficiency.

Third, while regulatory lag and the price schedule could be substitutes or complements
when it comes to creating investment incentives, in computing equilibria over a wide swath of
parameter space, we find that they are much more likely to be substitutes than complements.
This implies with a longer regulatory lag the changes in prices within a cycle are more likely
to purely reflect productivity changes than would be the case with a shorter lag.

Fourth, our analysis highlights that regulatory lag is an enormously and robustly powerful
incentive device. We show that a longer lag does not necessarily increase welfare. However,
in our computational analysis, we find that it takes extreme parameter values for shorter lag
to increase social welfare (e.g., extremely high marginal investment costs and virtually no
value created in the vertical structure), and even then, the gain from shorter lags is minimal.
When when we compute equilibria over a wide range of plausible parameter values and for
regulatory review periods ranging from one year to eight years, we find that expected social
welfare is nearly always higher for a longer regulatory lag.

We also endogenize the lag by allowing the regulator to choose its most preferred lag
at the beginning of a regulatory cycle. In other words, the regulator no longer commits
to fixed lag but instead chooses a lag that optimizes discounted welfare for any particular
productivity level that is revealed during the regulatory review. When we compute the
regulatory equilibrium for our baseline parameterization, we find that the regulator chooses
the longest feasible lag whatever the review reveals about the firm’s productivity.

Our paper adds to that portion of the literature on regulatory price setting in which the
regulated firm is modeled as a dynamic optimizer who anticipates how its current decisions
will shape its future costs as well as future regulatory decisions. In these models, produc-
tivity or costs evolve stochastically and endogenously through time, which in turn induces
endogenous evolution of regulated prices. Related papers include Lima and Gémez-Lobo
(2010), Pint (1992), and Biglaiser and Riordan (2000). Our paper is most closely related
to those by Linhart, Radner, and Sinden (1991) (hereafter LRS) and Armstrong, Rees, and
Vickers (1995) (hereafter ARV). LRS model a dynamic game between a regulator the man-
ager of a regulated firm. Similar to our model, the manager in LRS makes non-contractable
decisions over time that can stochastically increase the firm’s productivity. In contrast to



our model, the regulator does not seek to maximize an explicit objective but instead follows
a rule that entails decreased prices over time and which motivates the manager to increase
productivity. ARV also formulate an explicitly dynamic game between the regulator and the
regulated firm, and like our model, they assume that the regulator maximizes welfare over
the infinite horizon. In ARV, the regulated firm’s marginal cost in any period can either
be high or low, and the firm makes cost-reducing investments that can reduce the firm’s
marginal cost if it is high or keep it low if it is low. The regulator commits to a regulatory
review period and sets a fixed price over this period. Through time, the regulator adjusts
its review period and fixed price as circumstances evolve. Our model differs from ARV’s
in three respects. The first is minor: ARV assume a one-part tariff, while we assume that
the firm can receive a lump-sum subsidy.” Second, ARV assume that the regulator sets a
uniform price over the entire regulatory horizon, while we allow the regulator to set a time-
varying schedule of prices over the review period. This enables us to study the benefits of
using prices as an incentive mechanism.’ Finally, we have a richer state structure than ARV,
with multiple cost states, instead of two. This enables us to do computational analysis with
empirical plausible parameter values to gain insight into practical policy design issue such
as the relative magnitude of gains from increasing regulatory lag.

The remainder of the paper is organized as follows. Section 2 describes the model. Section
3 states a series of general results on the Markov perfect equilibrium. Section 4 reports the
results from our computational analysis. Section 5 considers an extension of the model in
which we consider the case in which the regulator cannot commit over time to a fixed value
of T, i.e., T' can vary from regulatory cycle to regulatory cycle. Section 6 summarizes and
concludes.

2 Model

We consider a vertical structure consisting of end consumers who purchase a service from
N downstream operating firms, who in turn rely on a regulated network firm for access to
bottleneck infrastructure. For example, as in the U.K., the operating firms could be freight
railway undertakings in a vertically separated rail system, and the network firm could be
the railway infrastructure manager. We normalize so that one unit of downstream service
requires one unit of infrastructure access.

2.1 Downstream surplus

When operating firm i pays the regulated price ¢ to access the network, its total costs are
(c+ p;) Qi + fi, where u, is a marginal cost of operating, and f; is a fixed operating cost.
Downstream operating firms are assumed to attain a Nash equilibrium in prices, which in
turn implies an equilibrium quantity D} (c) for each firm ¢ and a market demand for network

: _ N * 7

access given by D(c) = >_;_, Dj(c).
Downstream social surplus is the sum of end consumer surplus and downstream firm
profit, ¥(c), less the social cost Q = (1+ \) S~ f subsidies provided to downstream firms

®Later in the paper, we discuss how our results would change if we had one-part pricing.
6 ARV briefly consider the possibility of time varying prices at the end of their paper.
"Letting Q;(P1, ..., Py) denote firm i’s demand function, the Nash equilibrium prices P (c),..., P5(c)

s D i =1,..., N, and D () = Qi(P;(c),. .., Pi(c)).
5P,



to cover their fixed costs, where A > 0 is the marginal cost of public funds.® Consumer
surplus plus downstream profit is

U(e) =V (Di(e), ..., Dy(e) = ZMZDZ‘(C) —cD(c),

where V(-) is the gross benefit function of a representative end consumer.’ Utility maxi-

mization by the representative consumer and profit maximization by downstream firms can
be shown to imply

V() = =D(e) + | P"(e) = (m(c) + ¢)| D'(c), (1)

where P’ (c) = 32N, %*,((cc)) Pr(c) and Ti(c) = SN, %;,/(E:C)) ; are weighted averages of the equi-

librium prices of the operating firms and their marginal costs, respectively.!

2.2 Productivity and investment

The network firm’s profit in period 7 is (¢, —7,)D(c,;) — F'— I, where 7. = n(6,_1) is period-
7 marginal cost which depends on the realization of a productivity draw 5T_1. The firm’s
fixed cost consists of an exogenous component F' and endogenous productivity-enhancing
investment I, in period 7. We let 6 denote a particular realization of productivity, where
0 € [0,0], and  >> 0. We refer to  as the firm’s state. Increases in productivity reduce
marginal cost, i.e., 7/(-) < 0. Let An(f) = n(f) — n(6 + 1) denote the cost saving from a
one-unit improvement in productivity.

Following Doraszelski and Besanko (2004), the productivity draw in period 7 is given
by 0, = 0,1 + 0., where p_ € {—1,0,1} is a productivity shock. Productivity can thus
increase or decrease by at most one unit per period from its current level. This Markovian
productivity process implies that the past history of productivity change is summarized in
current productivity. This has a plausible implication: while the current period’s investment
in productivity enhancement can potentially shape the trajectory of future productivity
realizations, its effect will not be extreme. Thus, productivity will evolve gradually, a sensible
characteristic, we believe, for regulated infrastructure networks.

The probability distribution of the productivity shock is given by

Pr(p, = 1)=(1-8)G(,)
Pr(ﬁr = O) =1- ( 6)G(I’r> - 6<1 - G([T)a
Pr(p, = —1)=46(1-G(I;)),

where § is an exogenous parameter we refer to as depreciation, and G(-) is a strictly increas-

8The assumption that downstream firms are subsidized to cover their fixed costs is not essential to our
analysis, but it simplifies notation a little.

9We assume that end consumers have a quasi-linear utility function V(Q) + Z where Q is the vector of
quantities provided by downstream firms, and Z is a numeraire. The benefit function V() is assumed to be
increasing in the quantities @); and strictly concave.

10 An alternative formulation of our model would be to assume that the regulated monopolist sells directly
to end consumers. In that case, p; = 0, and P (¢) = ¢. We thus have the familar result that ¥/ (c) = —D(c).
In addition, because there is no subsidy to downsteam firms, A = 0.



ing, strictly concave function with G(0) = 0 and lim; .., G(I) = 1.!! We further assume

that for all 7 € [0, 00)
, 11-G()

6= gy )

where v > 0 is a parameter. This formulation satisfies the Inada conditions lim; o G'(1) = oo
and lim; ., G'(I) = 0.

It is convenient to think of the firm directly determining ¢, = G(I,)—which hereafter

we refer to as investment—and in doing so, it incurs a total cost I(q;) = G~'(g,). The

associated marginal cost of investment is thus [’(¢;) = . Given (2), I'(¢r) = 7=,

1
_ . . )
and the associated total investment cost is (¢,;) = v [—¢, — In(1 — ¢,)].

2.3 Static optimum

As a benchmark, consider a static model in which marginal cost equals 7, and the regulator
determines a price c. We assume that the regulator also provides the firm with a lump-sum
subsidy A. In practice, infrastructure network providers are often subsidized by government.
For example, the U.K. rail network provider, Network Rail, receives 70 percent of its funding
from government grants (Network Rail 2021). Similarly, in the Dutch railway system, the
network firm ProRail railroad receives about 58 percent of its revenue from government
allocations (Statistica, 2018). An alternative interpretation of the subsidy applicable to
airports is that the regulator uses single-till regulation in which a forecast of revenue from
an airport’s non-aeronautical activities such as retail establishments and parking is included
along with revenue received from landing charges to airlines to determine the airport’s overall
revenue requirement. Under this interpretation, A would be the commercial revenue forecast
approved by the regulator.

The firm is assumed to have the option to exit the market. If it does, it receives a per-
period profit normalized to zero. Exit is assumed to be sufficiently costly to the regulator
that it will choose the price and subsidy to satisfy the network firm’s participation constraint.

The network firm’s profit is (¢ — n)D(c) — F + A, where F is its fixed operating cost.
The regulator’s objective is a weighted sum of downstream surplus (less the social cost of
the network firm’s subsidy) and network firm profit, with the welfare weight on the latter
denoted by 1, and v € [0, 1):

Ue)— Q=14+ NA+¢[(c—n)D(c) — F + A]. (3)

For the boundary cases in which #,_; = § and 6,_, = . the probability distribution of p, extends in
the natural way. When 6,._; =0

Pr(p, = 1)=01-0)G(;)
Pr(p, = 0)=1-(1-6)G(I,),
Pr(ﬁT - 7]‘) =Y

and when 0,_; =6,
Pr(p, = 1)=0
Pr(p, = 0)=1-§(1-G(,)
Pr(p, = —1)=d(1-G(L).



The regulator chooses ¢, A to maximize (3), subject to the network firm’s participation
constraint, (c—n)D(c) — F+ A > 0. Because the weighted welfare function strictly decreases
in A, the participation constraint must bind. The static welfare optimum c°(n) thus solves

maxw(c,n) = V(c) — Q4+ (14+X) [(c —n)D(c) — F]. (4)

C

Using (1), the solution is characterized by the condition!?.

A D) P(Em) —EEm) — ) (5)
T+ A D'(O(n)) L+ |

8 (1 — (5)A'U,t+1 (0, Ct+1)
v +5Aut+1(9 - 1, Ct+1)
in full-information models of optimal regulatory pricing, the solution is independent of the
welfare weight 1) but not the social cost of public funds A\.!* The static optimal price could be
less than marginal cost to counteract market power exercised by the downstream operating
firms (Laffont and Tirole 2000)." Throughout, we let w%(n) = w(c®(n),n) denote maximum
static welfare when marginal cost is 7.

A(n) =n

The optimal price c®(n) must increase in 7.'* As is standard

2.4 Regulatory dynamics

Figure 1 illustrates the timing of the game between the firm and the regulator. The firm
makes investment decisions every period. Every T periods (the regulatory lag) the regulator
observes the firm’s productivity and then commits to a schedule of access charges ¢ =
(c1,...,cr) and a lump-sum subsidy A.'® This process repeats itself over the infinite horizon.
For now the regulatory lag 7' is exogenous; later we relax this assumption and allow the
regulator to determine 7. While 7 indexes time more generally in our model, we let t =
1,...,T denote a typical time period within the interval between reviews—what we call the
requlatory cycle. B

The firm’s productivity in period ¢ of a cycle is §;_;. The firm’s investments ¢; are
unobservable to the regulator, and except for 6y, so too are the realizations of {6, 1}]_;.

12The second-order condition for the static welfare maximization problem, w”(c’(n)) < 0, can be shown
to hold if and only if
c’(n)) D" (c°(n))

[D'((m))”
where m*(c%(n)) = dP” (dcj(")) — g (‘;OC(")) is the net pass-through rate for downstream firms. This condition

holds if the demand functon is concave, linear, or “not too” convex.
I3Differentiating the first-order condition w’(c’(n)) = 0, with respect to n and rearranging terms gives us

(0] (0]
dCTé") = —% > 0, since the second-order condition of the static welfare maximization problem

implies w”(c°(n)) < 0.

14This is because when A = 0 and v € [0, 1), the regulator is indifferent between increasing the network
firm’s overall profit via an increase in its operating profit (¢ — n)D(c) — F (through ¢) or by increasing its
subsidy A. By contrast, when A > 0, the regulator strictly prefers to increase the network firm’s profits by
increasing its operating profits rather than increasing its subsidy.

In an alternative formulation of our model in which the regulated monopolist sells directly to end
consumers (which as noted above entails A = 0) and the regulator maximizes a weighted sum of consumer
surplus and the regulated firm’s profit, with a smaller weight on the latter, then the participation constraint
will bind, and condition 5 reduces to the traditional efficiency condition c(n) = 7.

16We show in the Online Appendix that there is no loss of generality in assuming the firm receives a single
subsidy every T periods as opposed to a sequence of subsidies A; fort =1,...,T.

m* () + 21 — A2




Before a new cycle begins, the regulator reviews the firm’s assets and operating capabilities,
enabling it to observe the productivity realization 67 = 0 emerging from the last period
of the just-ended regulatory cycle. (This realization of #1 becomes the (singleton) support
of the firm’s productivity B, in the first period of the next cycle.) Based on this observed
productivity, the regulator sets the schedule of access charges for the upcoming cycle and
determines the subsidy. The regulator’s objective is to maximize discounted expected social
welfare over the infinite horizon. The regulator and the firm use a common discount factor
B e (0,1).

As in the static benchmark, the network firm has the option to exit the market, and
receives a discounted stream of profits equal to zero if it does. Using Baron and Besanko’s
(1987) concept of fairness, we assume that as long as the access pricing schedule and subsidy
provide the firm with an expected present value of profit over the horizon of the regulatory
cycle at least as large as the firm’s outside option, the firm is legally bound to remain in the
market for each period 1,...,T following a regulatory review.!”

The regulator is a strategic player in this game, and as such, it behaves optimally given
the information it observes. The regulator cannot commit to future schedules access tariffs
beyond period T', and because it cannot observe the realizations of {6, ;}/_,, the regula-
tor cannot commit to a schedule (¢({#,_1}7,), A({6,_1}L,) of state-contingent access prices
and subsidies.!® The upshot is that the regulator has partial, but not complete commit-
ment ability. The longer the regulatory lag 7', the greater the degree of the regulator’s
commitment.

2.5 Regulated firm’s investment problem and Bellman equation

Let ¢; = (¢, . . ., cr) denote the access charges that remain to be implemented in any period
t =1,...,7 — 1 of the regulatory cycle prior to the last period. If realized productivity
in period t is 6 € (0,0) (i.e., 6,1 = 0), the firm’s optimal investment program can be

summarized by a Bellman equation

u(f,¢c;) = qu[%)i](ct —n(0))D(¢;) — F — I(Qt) + Buiy1(0, cri1)

+p {(1 - 5)%Aut+1(97 Ct+1) - 5(1 - Qt)Aut+1(9 -1, Ct+1)} ) (6)

where u;(0, c;) is the present value of the network firm’s operating profits (exclusive of the
monetary transfer A) in periods ¢,...,T — 1 of the regulatory cycle, and Auz, (6, ¢iy1) =
w1 (0 +1, cop1) —up1 (0, cy1), 0 = 0,0 — 1.1 Further note that (6) implies that investment
in period t of a regulatory cycle depends only on the access prices c;;; in the remaining
periods t + 1,...,T. It follows that the access prices in later periods affect more periods
of investment than the access prices in earlier periods. (Thus, for example, the price ¢y in

17Fairness corresponds to a setting in which the network firm cannot wthdraw its assets without regulatory
approval.

18VVe rule out the possibility that the regulator can commit to a 7T-period menu of contracts
(c({0,— ), A({0,— 1}2,) that induces the firm to self select based on its productivity 6,1 (or equiva-
lently, to report its productivity truthfully every period.) Our focus here is on a relatively simple mechanism
is broadly similar to price cap regulation used in practice.

YFor § = § and @ = 6, the recursion in (6) is modified using the transition probabilities in (??) and
(?7). Throughout the rest of this paper, it will be understood that analytical expressions pertain to interior
realizations 6 € (6,60) of the productivity process and that expressions for boundary realizations 6 = @ and
6 = 0 can be obtained by using the transition probabilities in (??) and (?7?).



period 2 affects only the investment in period 1, while the price ¢y in the last period of the
cycle affects investments in periods 1,...,7 — 1.)

In period T' of the regulatory cycle, the network firm anticipates that at the end of that
period the regulator will observe the realization of its productivity ¢y for the first period of
a new cycle. The firm expects that the regulator will set a tariff schedule ¢(fy) and subsidy
A(go) for that upcoming cycle contingent on the realization of . (In equilibrium, the firm’s
expectation of the regulator’s strategy will be correct.) If the realization of Or_, was 0 (so
that the firm’s marginal cost in in period T is 77(f)), the possible realizations of 0, are 0 — 1,0,
or # + 1. The network firm’s period-7T" Bellman equation is then

ur(f,cr) = max(er —1(0))Dler) — F = Igr) + 5 [u (6, ¢(0)) + A(0)]

+ﬂ{ (1= 0)ar {[us (0 +1,¢(0 + 1)) + A0+ 1)] — [us(0, c(9)) + A(0)]} (}7)
—0(1 = gr) {[wr (0, ¢(0)) + AW)]) = [ur(0 = 1,¢(6 — 1)) + A6 — 1)]}

where u1(6,c;) + A is the firm’s value at the beginning of period 1. Unlike the expressions
for uy(+) for t < T, here the network firm anticipates that a change in its productivity level
will affect its access prices.

2.6 Equilibrium

We study the Markov perfect equilibrium (MPE) of the game between the regulator and the
network firm, which consists of objects {q (-, c/)}E, {uf(-, ¢}y, c*(-), A*(-) satisfying the
following conditions:

e For any 0 and any schedule of access prices and subsidy, ¢ and A, the network firm’s
value functions u; (0, ¢;),t = 1,...,T—1 satisfy (6). The network firm’s value function,
u(0, o) satisfies (7) given the regulator’s equilibrium strategy c*(6), A*(#). The firm’s
equilibrium investment strategies {q; (0, c;)}_, solve the corresponding optimization
problems in (6) and (7).

e For any 6, the equilibrium access prices and subsidy c*(6), A*(f) maximizes expected
social welfare, subject to the network firm’s participation constraint, given the firm’s
equilibrium investment strategy.?’

3 Characterization of the MPE

3.1 Preliminaries?!

Because the expected social cost of subsidizing the network firm is (1 + A\)A, and expected

welfare strictly decreases in A, the participation constraint ‘in the regulator’s optimization
problem will bind, i.e., u;(6,c*(0))+ A*(0) = 0 for all @ € [0, 0]. From (7) we can then obtain

Proposition 1 If the firm anticipates that the regulator will choose an optimal requlatory
policy c*(-), A*(+) in the next cycle, then for any policy c, A the firm faces in the current

20We formally state the regulator’s optimization problem in the next subsection.
2L A1l expression and results stated in this section, including Proposition 1, are derived or proven in the
Online Appendix.



requlatory cycle, (a) the firm does not invest in the last period T of the cycle, i.e., ¢5(0) = 0;
(b) for any realization 0 of Or_1,

ur (0, cr) = (er —n(0))D(er) — F. (8)

Proposition 1, part (a) is a standard result. In the terminal period, as it looks ahead to
the next regulatory review, the firm faces cost-plus regulation, squashing its incentive to
enhance its productivity. Part (b) of the result then follows directly: the present value of
the network firm’s operating profit at the beginning of period T of the regulatory cycle is
simply its static operating profit in that period.

The recursion in (6) implies that for any realization 6 € (0, 6) of the firm’s productivity
Et_l in any period of the regulatory cycle prior to the last, the firm’s optimal investment is
given by??

3 [ (15;5)A7{5+1(§,Ct+1; }
. B TO0AUL (U — 1, ¢
G0, crpn) = o5 Aumw,cm)} € (0,1), (9)

7+/6 |: +5Aut+1(€— 1,Ct+1)
t = 1,....,T—1.

The present value of the network firm’s operating profit at the beginning of the regulatory
cycle can be expressed as

r { (e = il €2))Dler) — F } (10)

B t—1 ~
u (0, ¢) = ZB —Ej [I(q;(et—lact-i-l))'e’(:?}

t=1
where 7,(0,¢c2) = Ej, | [77(57;1)’50 =0, CQ] is the expected marginal cost in period t of the
regulatory cycle when the network firm’s productivity at the beginning of the regulatory
cycle is 6, and the firm follows its optimal investment program throughout the cycle.?
(Note that 7;(6,ca) = n(#).) The discounted present value of the regulator’s welfare within
a regulatory cycle is S0 871 [W(e) — Q) 4+ ¥ [ua(f,¢) + A] — (1 + M)A, Given that the
participation constraint must bind, —A = u;(¢,c), and with (10), we can then write the
regulator’s problem as

T
W) = mélXZﬁtil
t=1

xp(cg_m(lﬂ){ (e — ,(0,€2))D(c;) — F }]

—F3,_, [I(qf (5t,1, ci1))[0, C2}
+67E;, [W(@T)w,@] , (11)

where W (#) is the regulator’s value function. As in the static model, once we account for the
binding participation constraint, the regulator’s welfare depends on A but not the welfare
weight 1. The regulator’s problem is akin to a Ramsey pricing problem, with each period
in the regulatory cycle akin to a distinct “good” with different marginal costs.

22For # = @ and 6 = 0, this expression is modified in the natural way given the corner transition probabil-
ities in (??) and (?7).

23The expectation 7,(6, co) = E;, | [U(Et—1)|9, cz} is a function co because it depends on the probability
distribution for the sequence of random variables {Et}le induced by the network firm’s optimal investment

~ T
program {qt(Ht,l, Ct+1)} , which, in turn, depends on the access prices ¢,y in future periods of the cycle.
1
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3.2 Characterization of the solution to the regulator’s problem

The characterization of the solution to the regulator’s problem depends on how £ W(’QVT) 16, co
O

depends on the access charges, and that in turn depends on how they affect investment. We
begin with investment.

Proposition 2 Foranyt=1,...,T—1, realization 0 ofgt,l, and values of ¢y 1, %ﬁ”l)
0,s=1,...,T —t. That is, when the firm’s investment in period t of requlatory cycle is an
interior solution, a lower price in any subsequent period of the cycle increases investment in
period t.

Proposition 2 formalizes the linkage between the access prices and investment within a
regulatory cycle. In a model of price cap regulation in which the regulated firm makes a
one-time investment in cost reduction, Cabral and Riordan (1989) find that decreasing the
price cap increases the level of the one-time investment. As they explain, this is essentially
the “Arrow effect”: a monopolist has a weaker incentive than a firm operating in a per-
fectly competitive market to pursue a nondrastic process innovation because the monopolist
restricts output (Arrow 1962). In our model, this Arrow effect operates intertemporally.
By lowering the price in period t + s, the regulator gives the firm the prospect of a higher
quantity demanded in that period. This magnifies the benefit to the network firm of reduc-
ing marginal cost in that period, which in turn increases the incentive for investment in a
prior period ¢. This is because more investment in period ¢ increases the likelihood that the
stochastic process of marginal cost will evolve toward lower costs from period ¢ to period
t+s.

To highlight how the regulator could potentially use the relationship between ¢; (-, c;41)
and ¢, to increase expected welfare, we note that a finite regulatory lag (i.e., 2 < T < 00)
creates both a partial alignment of interests between the regulator’s welfare objective and
the firm’s expected profit objective and a partial conflict of interests. Regulatory lag ensures
that within a regulatory cycle, the firm’s within-cycle cost reduction behavior is fully aligned
with the within-cycle portion of the regulator’s welfare objective, i.e., everything in (11)

except the continuation value BTEgT [W(ET) |0, 02] 24 In other words, if all that mattered to

the regulator was within-cycle discounted welfare, it could delegate investment to the firm,
knowing that the program {g;(6,_1,c;41)}" the firm chooses would be what the regulator
itself would choose. This is analogous to a static model of fixed-price regulation under
complete information in which the regulator can delegate the choice of input mix to the firm
knowing that the firm’s cost function reflects a socially efficient choice of inputs conditional
on output.?®

However, the regulator also cares about costs in future regulatory cycles, while the firm,
by contrast, cares only about the current cycle because at the beginning of each cycle its
expected discounted profits are reset to zero. (In effect, the firm perceives itself facing a cost-
plus contract between cycles.) The divergence between the regulator’s investment goals and

24Formally, the alignment of interests between the firm and the regulator when it comes to reducing costs

. . . . . 7. (6,¢2) OB | [%(5571)2|9’C2]
in the current regulatory cycle is reflected in absence of terms involving Ser and

in (12). The envelope theorem applied to the firm’s optimization problem embedded in u; (0, ¢) ifrif)lies that
they disappear when we differentiate the objective in (11) with respect to ¢;.

2 0Of course, the alignment of interests is not the case when it comes to access prices within a cycle.
The firm prefers access prices that maximize u; (6, c), while a regulator prefers access prices that maximize
discounted social welfare.
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the firm’s manifest itself in two distinct ways. First, and most obviously, from Proposition
1, the firm does not invest in the last period of the cycle. Second, the firm’s investments in
all other periods t = 1,...,T —1 of a regulatory cycle are socially inefficient because they do
not take into account the benefit that productivity enhancement today has on marginal costs
beyond the current cycle. Lacking direct control over investment, the regulator cannot do
much about the first inefficiency, but by Proposition 2 it can potentially do something about
the second inefficiency: it can reduce access prices in the current cycle to “turbocharge” the
firm’s investment incentives so that the firm acts “as if” it cared about the impact of its
investment on marginal costs in future cycles.

The regulator’s benefit from using the price to offset the firm’s comparatively myopic
investment behavior is reflected in the impact of ¢, on the regulator’s continuation value
B [W(07)]0,cz]. We can establish that the regulator can increase its future expected dis-
counted welfare by lowering the prices in periods ¢t = 2,...,T of the current regulatory
cycle—and by Proposition 2—increasing the firm’s investment—in periods t = 1,..., 7 — 1
of the current cycle.

0E; W (61)|6,¢c2]

Proposition 3 e

<0,t=2,...,T.

Proposition 3 then enables us to establish that in an important special case—interior
investment levels—the firm has a tendency to underinvest in cost reduction in some periods
prior to the final period of a regulatory cycle.

Proposition 4 Suppose for access prices c the firm’s optimal investments in all periods of
the requlatory cycle except the last are interior, i.e., ¢ (01—1,¢141) < 1 fort =1,...,T —1
and all realizations of gt_l. There exists at least one period t prior to the last period and
some realizations of productivity 6;_1 in that period in which the requlator would prefer that
the firm invests more than it actually does. That is, in addition to underinvestment in the
last period of the requlatory cycle, there is also some underinvestment in earlier periods of
the cycle.

The tendency for underinvestment has a direct implication for how the regulator chooses
the access pricing schedule. The first-order conditions for the schedule of access charges

c*() that solves the problem in (11) can be written as?
G16) = E60.6300)) = T prrngy — )R

where N
0B, [W(67)[0,co]

ft(ea C2> = /ﬁt(a CQ) - BT_H_I(l_'_;W < ﬁt(a C2>7 (13)
is the social marginal cost of increasing output in period ¢. It is the period-t expected
marginal cost 77,(6, c2) minus a long-run “incentive adjustment” that equals the rate of change
of the regulator’s future discounted expected welfare with respect to a one-unit change in

output in period t of the regulatory cycle.

) OB; [W(0r)|0,c2 ~ ~ %
In period 1, 20 g 5o (,e0) = 7,(6,2) = n(6) and ci(0) = (o)),

i.e., the price in the first period of the regulatory cycle is the first-best price. For periods
=2,...,T, social marginal cost £,(6, cy) is less than expected marginal cost 7,(6, c3), and
the regulator thus distorts the regulated prices for incentive purposes.

26Details can be found in the Online Appendix.
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Proposition 5 Under an optimal pricing schedule, in all but the first period of the regulatory
cycle, the regqulator chooses a price schedule less than the first-best schedule corresponding to
the expected marginal costs, i.e., ¢;(0) < P(m,(0,¢c3(0)), t =2,...,T.

The regulator thus counters the firm’s tendency to underinvest by committing to a more
aggressive schedule of access prices than it would have if, like the firm, it made decisions
solely on the basis of the current regulatory horizon. This predisposes the regulator to chose
access prices in periods ¢ = 2,...,T that are lower than the price c}(#) = °(n()) in period
1. Indeed, when there is no depreciation—when expected marginal costs will stochastically
decline over time—some access prices later in the cycle will be strictly less than the price in
the initial period.

Proposition 6 If there is no depreciation, i.e., 6 = 0, the requlator commits to access
prices in later periods of the requlatory cycle that are less than the price at the beginning of
the regulatory cycle, i.e., c;(0) < ci(0) for allt =2,...,T.

Summing up, there are two related but distinct investment distortions that arise in our
model. First, anticipating a new regulatory review, the firm chooses no investment in the
terminal period of the regulatory cycle. Second, the firm has a tendency toward underin-
vestment in all periods of the regulatory cycle. Regulatory lag can reduce the first distortion
by decreasing the frequency of reviews. It can reduce the second distortion by making the
horizon over which the firm makes its investment decisions more closely approximate the
regulator’s infinite horizon. The access pricing schedule cannot affect the first distortion,
but it can reduce the second, since lower prices tend to increase investment in all periods
but the last.

This discussion raises the question of whether access pricing and regulatory lag are com-
plements or substitutes. Specifically, does a longer lag make it less attractive or more at-
tractive to lower access prices to increase investment? If, as expected, a longer lag increases
investment for any given schedule of access prices, a longer lag can mechanically lead to lower
access prices. We thus want to remove this mechanical effect to assess complementarity or
substitution. In our computational analysis below, we do so by examining the difference
17,(0,¢c3) — £,(0, ca) between the expected marginal cost and social marginal cost. If this
difference becomes smaller (in any period t) as the regulatory lag 7' increases, the access
prices and regulatory lag are substitutes. To the extent that the difference becomes larger,
they are complements.

The access prices in our model are not, strictly speaking, price caps because our model
does not give the firm flexibility to set a price less than the cap. Still, Proposition 6 hints at
a rationale for why a regulator might want a price cap to decline over time (an X-factor) that
goes beyond the traditional rationale grounded in both efficiency and distributional consid-
erations. Decreases in price are an efficient response to decreases in expected marginal costs.
Required decreases in price also provide a way for the regulator to force the firm to share
some of its gains in productivity with consumers between regulatory reviews. Proposition
6 suggests a second efficiency rationale for an X-factor: a decrease in the price cap at some
point beyond the first year of a regulatory cycle provides an additional incentive for invest-
ment beyond that provided by regulatory lag. This additional efficiency rationale suggests
the use of X-factors that exceed the rate of decrease in marginal cost due to productivity
growth.?’

2TThere are other reasons why X-factors might differ from expected rates of cost reduction. For example,
Brennan and Crew (2016) point out that when the regulated service faces declining demand, the X factor
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3.3 The trade-off between static and dynamic efficiency and the
deadweight loss under the regulatory equilibrium

As has long been understood, price cap regulation entails a trade-off between static efficiency
and dynamic efficiency. The regulatory lag in our model gives rise to this traditional trade-
off, but it involves an additional element due to the use of the regulated price as an incentive
device

To see why, we derive an expression for the deadweight loss, which requires characteri-
zation of the first-best solution. In the first-best solution, the regulator chooses prices and
investment levels contingent on realized productivity, subject to satisfying the individual ra-
tionality constraint for the firm each period, NA + (¢ —n(6))D(c) — F — I(¢) > 0.2® (Under
this solution, it is as if there is a regulatory review each period, with the regulator, not the
firm, deciding the investment level.) The first-best price is static first-best price ®(n(f))
tailored to realized productivity 6 observed in a period. First-best welfare can be written as

Wiy = 00y L (B, [P 0@ )] -0}
| 57 [, [o@n)la0)] - woe)]

+ (14)

T T e >
L=0T | =S B+ B, (1 @e))la’(0)]
~ T
where q°(0) = {qU(Qt_l) |9} denotes the set of state-contingent first-best investment levels

t=1
over a T-period horizon when the initial productivity is 6.

To derive an analogous expression for the regulator’s welfare W7 (0) under a T-period

regulatory cycle, we can rewrite the regulator’s objective function in (11) as

wie) = SO 50 T (el 0) a6, c50) - (0}
| o7 [ B, [ @)l )] -7 (0)]

+ , (15)

L= | =S B A+ N B, |1 O et (0)) a7 (6)

where g*(0) = {q; (01, c;,1(0))%0,¢c5(0)},, denotes the firm’s state-contingent investment
levels over the T-period regulatory cycle when initial productivity is 6.

The deadweight loss under the regulatory equilibrium is W°(#) — W7 (). Subtracting
(15) from (14), the deadweight loss DW LT () can be written recursively:

DWL"(0) = W°(0) — W (0) = SET(0) + DET(0) + 5" Ej, [DWL(@'T)MO(@) . (16)

should be corrected to reflect the rate of demand decline, the rate at which average cost increases as quantity
falls due to the demand decrease, and the rate at which the change in price itself further induces a change
in quantity.

28 Alternatively, the individual rationality constraint could be that the firm’s expected profit over the
infinite horizon is non-negative. This would only affect the profile of fixed access charges, not the variable
access charge.
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where

T

SE(0) = 387 B, [o"00-1))16,a°(0)] = wlci (0), E [n(@0))l0. < (6)]) }17)

t=1

E[ (G110, a"(0)
E n(6,1))16,a°(0
3" By, (W7 (0r)|a°(0)
— XL BT A+ N B, [16°(01))]a(0)]
BT B, [W0r)16.a7(0)]
=S BT A+ NE, 16 B, i ()7 (0)]

S B ]> D(c;(0))

DET(9) =

The first component SET(0) is static inefficiency within the T-period regulatory cycle.
The second component DET(0) is dynamic inefficiency. It consists of two parts. The first
is the reduction in expected costs within the regulatory cycle when the investment schedule
is q°(#) rather than q*(#), holding output fixed at D(c;(f)) in each period. The second
part holds the continuation value fixed at the level achieved in the regulatory equilibrium,
WT(.) and is the net increase in this expected continuation value (after deducting expected
investment costs) when the investment schedule is q°(#) rather than q*(). This portion
of the deadweight loss arises because the equilibrium investment profile induced by the
regulatory equilibrium will not necessarily correspond to the first-best level. The recursion
in (16) implies that DW LT (0) is a (complicated) weighted sum of the SET(-) and DE” (")
for all 6.2

Static inefficiency SET(6) is unambiguously positive for two reasons, represented by the
inequalities in the following expression.

By, [ 0@l ®)] > By, [w(@(E (@110 a"(0)]).n(0h-1))la’(0)]
= W((E 0110, a0)] B [n@))l0,a0)])
= W(E [1(0i1))16,d(0)])
> w(c0). B [n@)).a’O)]), t=2....7. (19)

The first inequality reflects the traditional source of static inefficiency under price cap reg-
ulation: there is a welfare loss because the access prices are not tailored to actual marginal

cost.>® The second inequality arises because the optimal price is not necessarily the static
optimal price when marginal cost in period ¢ is F [n(@t_l))w, qO(H)]. This is true for two
reasons. First, the expected marginal cost in period ¢ under the regulator’s optimal pricing

schedule is 7,(6,c3(0)) = E [n(@t_l))|0, q*(@)] #+FE [n(@t_l))|9, qO(Q)} because investment is

29The weights depend on 3 and ¢°(-).
30Recall that, w’(n) = max.w(c,n), so wo(n(gt,l)) > w((E [n(gt,l))w,qO(G)]),n(ét,l)) since

A(E [n(@t,l))|9,qo(9)}) is a feasible but not optimal access price when 5(f;_1) # E {n(@t,l))w,qo(é’) .
Taking expectations with respect to the probability distribution q°(#) yields the first inequality.
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not first best. Secondly, even if 7,(0,c3(0)) = E [n@H))\e, qO(e)], in periods t = 2,...,T,

ci(0) < (7,(0,c5(0)) because the price is based on social marginal cost Et(ﬁ,c§(0), not
expected marginal cost 7,(0, c3(0)).

As noted above, the regulator creates investment incentives in two ways: increasing
regulatory lag and lowering access prices. Both incentive devices reduce static efficiency. If
these devices are substitutes, the regulator would rely less on distortions in the price as T
increases and would rely on regulatory lag to increase investment incentives. If so, it seems
possible that increases in 7" would not necessarily increase the static inefficiency component of
the deadweight loss. If, by contrast, these two incentive devices are complements, distortions
in the price would increase as T increases, and SET () would presumably increase in 7.

From (19) a lower bound on SET () will be

T

> H B, [ 001))10,d°(0)| - (B [n01))16,d°0)]) |

For the specification in Table 1 below this has a simple form:

where Var (-) denotes the variance with respect to 6,_1. The incremental change in
static inefficiency from increasing regulatory lag from 7" — 1 to T is thus proportional to

BT War;

Or_1

[(n(gT—l))w, qD(Q)}. If () is convex and most productivity gains have been

exhausted, then we would expect Varg [(U(ET—I)) |0, qO(G)} to be small. This suggests that

there are circumstances under which increasing regulatory lag might entail only a modest
loss of static efficiency.

To further study the determinants of the deadweight loss, we compute the deadweight
loss and the component of the decomposition for a wide range of parameterizations. We
report those results below.

3.4 Is some regulatory lag better than no lag?

The trade-off between static and dynamic efficiency raises the possibility that no regulatory
lag (T' = 1) could be better than some lag (7" > 1). However, for the special case in which
there is no depreciation, we can show that some commitment always benefits the regulator.

Proposition 7 Suppose there is mo depreciation of productivity, i.e., & = 0, WT(0) —
W0) > 0 for all 0 and T > 1, i.e., some requlatory lag (T > 1) always results in higher
expected social welfare than continuous regqulatory reviews (T = 1).

The key insight used to prove this result is that when it comes to investment in the first
T — 1 periods of a T-period cycle, the regulator’s interests and the firm’s interests are not
“too far” out of alignment. As discussed above, the firm’s optimal investments when faced
with a schedule of access tariffs maximize discounted social welfare within the regulatory
cycle. Though myopic (because the firm does not consider the benefits of its investments
beyond the current cycle), the firm’s behavior is still preferable to there being no investment
at all, as is the case when T = 1.
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It does not follow that a longer regulatory lag is always better for the regulator. If the
marginal cost of investment is sufficiently high and there is positive depreciation, a longer
lag can make the regulator worse off.

Proposition 8 If § > 0 and the slope of the marginal investment cost function becomes
arbitrarily large, i.e., y — oo, then WL (0) —W(0) <0, i.e., a longer regulatory lag (T > 1)
results in lower social welfare than continuous regqulatory reviews (T =1).

Proposition 8 implies there is nothing inherent in the structure of regulation in our model
that makes a longer regulatory lag better. But Proposition 8 is merely a possibility result.
The question we ask in the next section is whether there is an interesting trade-off between
shorter and longer lags in plausible economic environments. We explore that question next.

4 Computational Analysis

To further explore properties of optimal regulatory pricing schedule and the trade-offs it
entails, we compute equilibria of the model.

4.1 Specification and parameter values

Table 1 presents expressions for the economic objects underlying our computations. The
parameter a scales the magnitude of downstream demand, while b is the degree of horizontal
differentiation among downstream firms, with b = 0, corresponding to the case in which the
downstream firms are independent, and as b — 1, the services are seen by end consumers
as perfect substitutes. Marginal and fixed costs are assumed to be the same for all oper-
ating firms and equal to p and f, respectively. With this specification, the downstream
price-setting game has a symmetric Bertrand-Nash equilibrium. In the relationship between
productivity and marginal cost, 1, is the annual percentage decrease if productivity increased
by one unit each year.

Table 2 shows the parameter grid G we use in our computations. Occasionally, we focus
on a baseline parameterization in which parameters take on the bold-faced value in the table.
We take a period to be a year, so the parameter values are chosen relative to that yardstick.
For example, the values of 1; imply that the maximum rate of potential cost decrease of the
network firm ranges from 0.5 percent per year to 15 percent per year.

The grid G consists of 31,250,000 distinct parameter combinations. The parameter values
are not intended to represent any particular setting, but they encompass, we believe, plausible
economic environments. For example, the values of a imply that the price elasticity of market
demand for access at the static welfare optimum ranges between about —0.49 to —2.65.
Upper and lower bounds for some parameters, such as b and 3, are implied by theory. For
most other parameters, we selected values that were empirically plausible. An exception was
~. Because it is difficult to identify a plausible value of v, we let it vary within a wide range.
The values of the parameters in the last fives rows of Table 2 y, f, F, 8, and 6 are fixed
throughout, with the value of u based on empirical estimates of cost conditions for freight
railroads, as discussed in Besanko and Cui (2016).

All computations are done in MATLAB 9.2 (R2017a) using the University of Florida’s
supercomputer cluster. In each parameterization, we use Gauss-Jacobi iterative method to
compute the MPE prices, investments, and welfare. Our calculations achieved convergence
for 86.83 percent of the parameterizations in G. The results of our computations over G
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reported below exclude all parameterizations for which we had non-convergence for some 7.
For example, if we have convergence for a particular parameterization for 7' =1,...,7 but
not T' = 8, we exclude this case.

4.2 Computational results

In what follows, we characterize regularities established by our numerical calculations as
“Results.” Results are, of course, distinguished from the propositions above established by
formal arguments.

Figure 2 presents our findings for state # = 15, a state in which the network firm has
achieved some productivity gains but has not fully exhausted its potential for even more.?!
We present analogous figures for states = 5,10, 20, 25 in the Online Appendix. The results
displayed in those figures are broadly similar with those presented here.

We begin by characterizing equilibrium investment for a fixed productivity state.

Result 1 For 100% of the parameterizations in G, a longer requlatory lag induces more
tmvestment in equilibrium at any period within the regulatory cycle prior to the final period,
ie, @ () >q*(0),t=1,....,T —1,T =1,...7, for productivity state 0 = 15.

Result 2 For 100% of the parameterizations in G, for any regulatory lag, investment de-
creases monotonically throughout the regulatory cycle, i.e., g% (0) > ¢*(0),t =2,...,T,T =
1,...8, for productivity state 8 = 15.

These results, illustrated in the two upper panels on the right hand-side of Figure 2,
highlight the power of regulatory lag in motivating investment. Result 1 shows that for
swath of parameter space for which we computed equilibria, a longer lag always results in
more investment than a shorter lag at a given point in a regulatory cycle. Result 2 shows
that as the firm’s decision horizon diminishes before its next review, investment goes down
(eventually reaching zero by the terminal period in a cycle, as established in Proposition 1).

The next result summarizes our findings on the impact of regulatory lag on welfare
illustrated by the bottom panel the right-hand side of Figure 2.

Result 3 For more than 97% of the parameterizations in G, the requlator’s long-run wel-
fare was higher the longer the regqulatory lag, i.e., WTTY(0) > WT(0),T = 1....,7, for
productivity state 0 = 15..3

The percentage of parameterizations in which the regulator prefers a longer lag to a
shorter one ranges from 0.9764 when 7' = 7 (so W8(0) > W7(0) in 97.64 percent of the
parameterizations in G) to 0.9937 when 7" = 2. These proportions are noteworthy for two
related reasons. They show, consistent with Proposition 8, that within our parameter grid
the regulator might not always prefer some commitment to no commitment. They also
indicate that the set of parameterizations in which the regulator would prefer not to commit
is extremely narrow. The small sliver of cases in which the regulator prefers a shorter lag

31In Figure 2, the superscript T denotes the dependence of equilibrium objects on the length of regulatory
lag. Further, the term ¢ *(6) denotes equilibrium investment in period t of a T-period cycle, i.e., ¢ * () =
q; (0,ci 1 (0)) fort =1,...,T.

32Tt should be noted that in slightly over one percent of parameterizations in Figure 2, W7 (15) < 0,
indicating that the regulator would prefer, if it could, to have the first salvage its assets rather than produce.
We tried to avoid this possibility through our choices of a, f, and F. However, if we exclude the cases in
wheih W7 (15) < 0, the percentages and patterns are virtually identical to those in Figure 2.
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tend to occur for extreme parameterizations, primarily when the slope v of the marginal
investment cost function is so large, or the market demand parameter a is so small, that
there is practically no investment. This can be seen in Figure 3 which shows the percentage
of parameterizations for which W7+1(15) > W7 (15) with a single parameter fixed at a
particular value. (Thus, the lowest line in the top left-hand panel of Figure 3 is the percentage
of equilibria for which WT+(15) > W7 (15) with v fixed at 5,000 and all other parameters
varying in G.). The results on WZ*1(15) > W7 (15) in Figures 2 and 3 further reinforce the
theme of how potent regulatory lag can be despite its adverse impact on static efficiency.

Even though a longer lag generally increases the regulator’s long-run welfare, the returns
to a longer lag generally diminish. We illustrate this in the upper-left panel of Figure 4,
which plots W (#) for the baseline parameterization. We see in this figure clear diminishing
marginal returns to increasing regulatory lag. For example, at a low level of productivity such
as # = 5, where opportunities for future cost reduction are abundant, there are meaningful
gains in expected welfare in moving from no lag to a two-year lag (about 9.4 percent) or
from a two-year lag to a three-year lag (about 6.2 percent). However, these gains are much
smaller in moving beyond a six-year lag (e.g., the gain from 7" =6 to 1" = 7 is 1.7 percent).
At an intermediate level of productivity such as 6 = 15, the gains from increasing regulatory
lag are more modest, about 3 percent when we move from 7" =1 to 7' = 2, and 2.3 percent
from T'= 2 to T' = 3. Beyond T" = 6, the gain from increasing regulatory lag are less than
one percent per additional year.

Returning to Figure 2 and moving from the bottom to the top of the left-hand panels,

we have several results on the equilibrium access prices. The first pertains to the percentage
cl* (0)—cI™*(0)

decrease EZX]

in prices.
cl* (0)—cI™*(0)
Result 4 For oll T = 1,...,8, the percentage decrease 2
Ct—1
0;1(0,¢5(0))—7,(9,¢3(9))
|7e—1(8,c5(0))|
parameterizations in productivity state 0 = 15.3 Beyond the second period of a requlatory
cycle (i.e., t > 3) the percentage decrease in the price exceeds the percentage change decrease

in expected marginal cost in more than 80% of parameterizations for all T =1,...,8.

in price is greater than

the percentage decrease in expected marginal cost in more than 60% of

T
oI, (0)—cT*(0) }

The percentage decreases in prices, { 0] , along the price schedule can be
t—1

t=2
thought of as analogous to a commitment to a set of time-varying X-factors. In practice,

the X-factors in price cap regulation have two rationales—they more closely match prices
to marginal costs that fall over time due to improved productivity (an efficiency rationale),
and they share the benefits of productivity improvements with consumers (a distributional
rationale). Our analysis has highlighted that the price schedule to which the regulator
commits has an additional efficiency rationale: motivating the firm to internalize the benefits
of investment in the current cycle for cost reduction beyond the current cycle. Result 4

33When the access price increases from one period to the next (as is possible when depreciation is suf-
0371_03 C’tr—l_c? mTfl—mT

Czll| "2{1‘ fltT71|
increases in access prices tend to be less than percentage increases in expected marginal cost. Our model
would thus suggest that when marginal costs are expected to rise, price escalation should be less than
expected cost escalation.

ficiently positive), will be negative. A tendency for > indicates that percentage

the bottom panel on the left-hand side of tells us that this increase tends to be less (i.e., more negative)
than the increase
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suggests that this additional role would often call for X-factors that are larger than those
based solely on traditional efficiency and distributional considerations. The incentive role of
access prices is particularly large for prices later in the cycle. The price in any period affects
investment in all prior periods of a regulatory cycle. Later-period prices thus play an outside

role in shaping investment incentives.

21(0)—c{™(0) and Te=10:c5(0))—-7,(6.c3(9))
|eZ,6] 10300 7

but we find that the difference in magnitudes can be quite large. For example, when T" = 2,

for the baseline parameterization the percentage decrease in expected marginal cost between

periods 1 and 2 when # = 9 is very small, about 0.02%. However, the percentage decrease

in prices between periods 1 and 2 is 13.8%.

Result 4 speaks only to the direction of the inequality between =

. . . . . ~T Tx ~T T'x .
We also investigated how the incentive adjustment term 7, (6,c5*(0)) — &, (6,¢c3*(0) is
affected by regulatory lag.

~T
Result 5 For any t, the incentive adjustment term 7; (6,ck*(6)) — €, (0,cE*()) decreases
as T increases in more than 85% of parameterizations in productivity state 6 = 15.

This result indicates that there is a strong tendency for the distortion to access pricing
to decrease as regulatory lag increases. Regulatory lag and the price schedule are thus much
more likely to be substitute incentive mechanisms than complementary ones.

The remaining panel on the left-hand side of Figure 2 pertains to the access prices
themselves.

Result 6 For any given period t of the regulatory cycle, the price cI* (0) increases in the

length T of the requlatory cycle in less than 25 percent of parameterizations when the pro-
ductivity 0 = 15.

This result reflects the beneficial impact regulatory lag has on investment and thus the
social marginal cost on which access prices are based.

4.3 Deadweight loss decomposition

The decomposition of the deadweight loss in (16) illustrates the source of the welfare gains
from a higher 7. Panel 1 in Figure 5 shows the deadweight loss DW LT (0) in the baseline
parameterization for regulatory lags T = 1,...,10, and panel 2 shows the corresponding

continuation value BTEET DWL(ET)W,qO(Q)] For this particular parameterization, the

deadweight loss goes down as 7' increases.

As noted above, the deadweight loss for any § will be a weighted sum of the SET(-) and
DET() for all value of §. Panel 3 in Figure 5 shows the static inefficiency SET (6) for regula-
tory cycles ranging from 7' = 1 to T' = 10. While SET(0) increases in T when productivity is
sufficiently low, it does not necessarily increase in T" at higher levels of productivity. This is
consistent with regulatory lag and access pricing being substitutes rather than complements
when it comes to motivating investment.

Panel 4 in Figure 5 shows the dynamic inefficiency component of deadweight loss DET (6).
For T' > 4, the dynamic inefficiency decreases as T" increases. However, monotonicity does
not hold for T'=1, 2, 3.

The key insight here is that while longer regulatory lags significantly reduce the dead-
weight loss from dynamic efficiency that can arise with a shorter lag, they entail just a
modest sacrifice of static inefficiency. This is because with a shorter lag, the regulator relies
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heavily on reduction in the price to increase investment incentives, which, as we have seen,
reduces static efficiency. With a longer lag, the regulator does not need to lean into these
distortions quite as much. The longer lag by itself helps boost investment.

4.4 How important is it for the regulator to be foresighted?

In our model, the regulator is foresighted, taking into account how the price schedule in the
current regulatory cycle affects decision making by itself and the firm in all future cycles.

5 Endogenizing the length of the regulatory cycle

So far we have assumed that the regulator could commit ez ante to the length 7" of the
regulatory cycle. In this section, following ARV, we relax this assumption and allow the
regulator to determine 7T at the beginning of a new cycle. The lag T thus becomes an
equilibrium choice along with ¢ and A.

The regulator’s problem is

T
— t—1 o
W) = 617..1.21%67;6 [W(cr) —
+ 1+ Nu(0,c1,...cr) + BT E; |W(Or)[0,ca, ... cr| | (20)

where 7 is the set of possible cycle lengths. The solution to this problem involves a regulatory
cycle length 7'(0) that will depend on the firm’s productivity coming out of the previous
regulatory cycle.

5.1 Is a fixed cycle length a Markov perfect equilibrium?

This framework allows for the possibility that the regulator chooses a cycle of a fixed length
irrespective of the firm’s productivity, i.e., T'(6) = T” for all § for some particular value of
T, namely 7”. Because such an outcome would replicate the full-commitment case studied
in the previous section, we refer to this as the full-commitment equilibrium.

A necessary condition for a full-commitment equilibrium of length 7' is that the regulator
has no incentive for a “one-shot deviation” to another cycle length T and followed by a
return to cycle length T' when the deviation is over. That is, if W7 (#) is the value function
corresponding to the full-commitment solution with a regulatory cycle of length T, then for
any other cycle length T' .

T
W) = W) = max Y87 [O(c) - €
prps
AN, op) + 8T (W O5)l6,ca, o), (21)

Figure 6 shows computations of WAT(Q) and WT’f(Q) for the baseline parameterization
and T = 1,...,10. We compute W (0) — W7 (0) (shown as WTT — WT in the figure
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6).>* For T < 10, the regulator has an incentive to deviate to a longer cycle for all 0, i.e.,
W) — WT(9) > 0 for all 6.3

Figure 6 reveals two regularities. First, the gain from a one-shot deviation becomes
smaller as the firm’s productivity increases. A commitment to a regulatory lag is less vul-
nerable to opportunistic deviation by the regulator when potential gains from enhanced
dynamic efficiency are smallest. Second, the gain from a one-shot deviation is greater for
shorter regulatory cycles than for longer ones. For example, when 7" = 2 and 6 = 10, de-
viating to 1" = 10 increases the regulator’s discounted welfare from 494.4577 to 539.0846
(about 9 percent). When 7' = 8 and ¢ = 10, deviating to 7" = 10 increases the regulator’s
discounted welfare from 560.1224 to 563.9871 (about 0.69 percent). Thus, shorter regulatory
cycles are more vulnerable to opportunistic deviation by the regulator. For regulatory lags
used in practice such as T'= 4 or T' = 5, the gains from one-shot deviations in our baseline
parameterization are relatively small for all 6.

5.2 Markov perfect equilibrium regulatory cycle

The analysis of one-shot deviations rule out the possibility that the equilibrium regulatory
lag coincides with the full-commitment equilibrium for 7" < 10. However, it does not tell us
what the Markov equilibrium policy 7(6) is.

To determine the equilibrium, we solve the regulator’s optimization in (20) assuming reg-
ulator has a choice among ten different regulatory lags. We use an iterative algorithm to solve
this problem computationally. At the beginning of an iteration, we conjecture a single value
function W (#). Along with that we conjecture sets of investment and access pricing policy
functions for each T'. We use the common value function and the T-specific conjectures of the

investment and pricing policy functions to compute an expectation EféT [/W@T) 10, ca, ... CT]

for each candidate T" € {1,...,T'}. This, in turn, enables us to compute equilibrium ac-
cess prices, investments, and firm discounted profits for each possible T, which then be-
come our conjectures for the next iteration. This step also implies value function candi-
dates, {W*'(6), W?2(6), ..., W (#)}. Our conjectured value function for the next iteration is
maXTe{L_”’T}{WT(H)}, which then becomes the basis a revised expectation on the right-hand
side of (20). If this process converges, the equilibrium lag 7*(0) = arg maxreqr,  m{W7(0)},
and the regulator’s equilibrium welfare W () = W1 (6). By construction, T*(f) and W™ ()
satisfy (20) and constitute a Markov perfect equilibrium.

When we compute the equilibrium for the baseline parameterization, we find 7* (6) = 10.
Figure 7 shows the regulator’s value functions for each of the candidate regulatory lag. The
figure illustrates that if the regulator “believes” that 7% (f) = 10, it will in fact have an
incentive to select 7' = 10.

It is well understood by economists and policy scholars that regulatory lag is a valuable
incentive tool when it comes to motivating regulatory firms to make efficient investment
decisions. We see the analysis in this section as showing just how powerful regulatory lag
can be. Recall that, in principle, the regulator could motivate the firm to invest with a short
regulatory lag and access prices that sharply decline beyond the first period, and in doing
so, it preserves some degree of static efficiency. The fact that the regulator, even when it
cannot commit to a lag ex ante, will nevertheless choose the longest feasible regulatory lag
shows that adjusting the access pricing schedule (or, equivalently, adjusting the X-factors)

31 Note that W10# — W# refers to WT’f(H) —WT(6) when T = # and T = 10.
35Note that for T = 10, WT-T () — WT(0) < 0 for all # and T < 10.
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goes only so far in promoting dynamic efficiency. Ultimately, the shorter regulatory lag has
a serious bug: in the last period of every cycle, firm will behave opportunistically and not
invest in anticipation of the next review. With a shorter lag, this opportunistic behavior
recurs more frequently, which takes its toll on expected social welfare.

6 Summary and conclusions

This paper studied a stochastic dynamic game of regulatory price setting. In our model, a
regulated firm makes investments each period that stochastically improves its productivity
and reduces its marginal costs. The infinite horizon over which the firm and the regulator
interact is divided into regulatory cycles that last for T-periods. At the beginning of a
regulatory cycle, the regulator—whose objective is to maximize expected welfare, subject
to satisfying the network firm’s participation constraint—commits to a T-period schedule
of access charges in each period of the cycle. It cannot, however, commit to subsequent
schedules for future regulatory cycles.

It is not a general property of our model that a longer regulatory lag is always better for
a welfare-maximizing regulator. Our computational analysis illustrates that a longer lag can
decrease expected welfare. For parameterizations that predispose investment to be low (e.g.,
when the marginal investment cost function is steeply sloped or when market size is small),
the loss in static efficiency from a longer lag can exceed the gains in dynamic efficiency from
a longer lag. This occurs not only because of the traditional source of static inefficiency
with regulatory lag—the regulator not tailoring prices to within-cycle changes in the firm’s
productivity—but also because the regulator uses prices as incentive device to induce more
investment in productivity enhancement.

Still, we find that a longer lag is better for expected welfare than a shorter lag for the
overwhelming number of parameterizations for which we computed equilibria. This comes,
though, with an important caveat: we find strong diminishing returns to longer lags. Most of
the additional benefit of a longer cycle is captured with regulatory lags of lengths no greater
than the longest lags used in practice, five to six years.

A key force in our model is that reducing the regulated price in any given period of
the regulatory cycle beyond the first period increases the marginal product of investment in
any prior period through an intertemporal Arrow effect. The prospect of a higher quantity
demanded in period t + s of a regulatory cycle magnifies the benefits of reducing marginal
cost in that period, which in turn increases the incentive for investment in a prior period
t because such investment increases the likelihood that the stochastic process of marginal
cost will evolve toward lower costs from period t to period t + s. But the regulator does
not use the price to motivate more investment to reduce expected marginal costs within the
regulatory cycle. This is because within a cycle the regulator and the firm’s incentives for
cost reduction are aligned. Instead, the regulator uses the price schedule to offset the firm’s
tendency to ignore the impact of current-cycle investment on marginal costs in future cycles.
With the firm’s discounted expected profit reset to satisfy its participation constraint at the
beginning of each period, the firm’s perceives no benefits in future cycles from enhancing its
productivity within the current cycle. The regulator, however, does perceive a future benefit
from productivity increases within the current cycle. By distorting the price schedule down-
ward, the regulator “juices” the firm’s investment incentives within the current cycle so that
it acts “as if” it did care about the impact of those investments on future productivity. This
underscores an important policy implication of this paper: in setting prices or caps on prices,
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regulators should think of their impact beyond the current regulatory cycle. Our analysis
also suggests the use of X-factors in price cap regulation that are greater than expected
decreases in costs based on anticipated increases in productivity. This latter conclusion is
reinforced by our computational analysis finding that the percentage decrease in access prices
within a regulatory cycle often exceeds the percentage decrease in expected marginal costs.

In general, lower access charges and regulatory lag could either be substitutes or com-
plements. Our computational analysis illustrates that they are substitutes far more often
than complements, i.e., a longer lag leads to less distortion in the price relative to the case
in which the regulator does not use the price as an incentive device. This makes sense. With
a longer lag, the firm’s investment horizon expands, and its investment incentives are more
aligned with the regulator’s. The regulator’s need to distort prices downward is accordingly
attenuated.

There are number of extensions of the model presented here. For example, we have
assumed that the network firm’s outside option is invariant to its productivity level. While
this seems natural in our context, where the firm’s assets are highly specialized and have
very limited redeployment value, it would be straightforward to extend our model so that
the outside option depends on productivity. This would mitigate, somewhat, the firm’s
drop-off in investment in the last period of the regulatory cycle because the firm would
now have a reason to care about the impact of its investment in that period on its future
profitability. This would, one might conjecture, make it less necessary for the regulator to
distort the access charges for incentive purposes. Another extension would be to introduce
the possibility of large changes in economic circumstances that could exacerbate the static
inefficiency from commitment to a price schedule. Such a possibility reduces the power of
regulatory lag as an incentive device. Given that we find strong diminishing returns to
regulatory lag when there is no possibility of drastic changes in economic fundamentals, we
conjecture that the possibility of potentially large and hard-to-predict changes would result
in optimal regulatory lags that are consistent with those we observe in practice, three to five
years. Finally, investment in cost reduction is not the only nonverifiable investment a firm
could make. A network infrastructure firm could also invest in network quality, as in Besanko
and Cui (2016). If network quality reduces the marginal costs of operating firms or directly
increases the demand of end consumers for the downstream service, then more investment
in quality by the network firm would increase the demand for access to the bottleneck
infrastructure. Given this, the marginal benefit of the network firm’s investment in quality
would depend partly on the margin between the network firm’s price and its marginal
cost. Unlike the cost-reducing investment featured here, a higher price might stimulate
more investment in quality. Distortions to access pricing by the regulator to stimulate both
cost-reducing investment and investment in network quality may offset each other. As a
consequence, the optimal price schedule may result in changes in price during the regulatory
cycle that more closely track changes in expected marginal costs than is the case in the
model in this paper.

7 Appendix

Proof of Proposition 2:
Preliminaries: Let

(1 —0)Aup1(0, crp1) + 0AU 1 (0 — 1, ¢11)] (22)

“(0,c
0 e = om0

11— q:(ea Ct+1)
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qu (9,Ct+1)

Because the function z(q) = ﬁ is strictly increasing in ¢, to prove that e~ <0,s=
1,...,T —t, it suffices to prove that %’iﬂ) <0,s=1,....,T—t

£ 9z (0ct),

Part 1: Derivation o 3
Ct4s

We begin by establishing that for any t = 1,...,T — 1, realization 6 of 5t_1, and values
of ¢yy1,

0z{(0,ciy1) 5° (1—- 5)AE’§t+s_2 [U(§t+s—2)|9, Ciy2

Deirs 7| +0AE;, (1B 2)l0 - 1
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First consider s = 1. Using (22 we have

Mzé[(l—é)

Ociy1 Y
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To evaluate this term, we begin with the version of (6) for period ¢ + 1:

ur1(0, 1) = . mg[)gl](ctﬂ —1(0))D(ci11) — F = I(qey1) + Bugya(0, coya)
t41 s

+B{(1 = 0)qir1Ausi2(0, crya) — 6(1 — qy1)Aug1 (0 — 1,ci40) ) (24)
Applying the envelope theorem to (24)

aut+1(9; Ct+1)

OCriq = (cia1 — 1(0))D'(cry1) + D(cisr)

Thus
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0c; 41 8ct+1 6Ct+1
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Now, consider s = 2, i.e., w.% Using (22),
Ct12
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36This is provided t +2 < T, or t < T — 2.
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8Aut+1(6,ct+1) and 8Aut+1(9—1,ct+1)
Ociy2 Ociy2 ’
Applying the envelope theorem to (24) and rearranging terms in the resulting expression

gives us

To evaluate this, we need to determine the expressions for
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where it is understood that ¢;,; = ¢/ ,(f,ci2). Using the logic of our analysis above,
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Consider, next, s = 3, i.e., ZE0c1) 37 Uging (22)
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To evaluate this, we need to determine the expressions for
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Applying the envelope theorem to (24)
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where it is understood, as above, that ¢;,; = ¢;,1(6, ¢;12). To determine %ﬂf“’), use (6),

we can write the expression for u;o(6, ciy2) as
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where it is understood that ¢}, y = ¢:12(0, ci43). Now, from (6) applied to ¢ + 3

aut+3 (9, Ct+3)

Dcrrs = (cip3 — (0))D'(cri3) + D(coys).

Ausy3(6+1,ce43) and OQuiy3(0—1,c643) )

Substituting this expression (and the corresponding ones for s i e
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Substituting (32),(33), and (34) into (29) and simplifying gives us
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It follows from (38)

A 0 0
02w 11(0, er11) = BQAEE [n(9t+1>|07ct+2i| D'(ct13) (39)
aCt+3 t+1
A —1 9
OB (0 —1,€11) _ B*AE; [n(9t+1)|9 -1, Ct+2} D'(cr13) (40)
8ct+3 t+1

where

AF;

01

i Bpy [1(0r41)[fia = 6.
s = | |

0111

_ By, |n0en)lfir =0 —1c
[U(eﬂrl)w_l’ct”} - { i; [ [;Z%t+1t)|%t—1 Q’Ct:]Z] }

Ort1

AFE;

O¢v1

Substituting (39) and (40) into (28) gives us

927 (0, ci11) 3° 7z o /
TJFB = 7 {(1 — 5>AE§t+1 |:77(9t+1>’97 Ct+2] + 5AE§t+1 |:77(9t+1>’9 — 1, Ct+2] } D (Ct(;fl))
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forallte1,2,...,T — 1.
Repeating the logic applied above to the cases of ¢; 14, ..., cr, yields the expression (23).
Part 2: Proof that %ﬁ“) < 0: This is established in (25).

Part 3: Proof that %’fjl) <0,s=2,...T —t
In light of (23), it suffices to show that AEEHSQ [n(5t+s,2)|9, Cii2| > 0 (since it would
immediately follow that AE5t+s_2 [n(gprs,g)]@ -1, Ct+2:| > 0 as well). Let us first consider

% (i_e,, s = 2) and note that
42

E’ét U(gt)@tfl =0, Ct+2} = n(0) - (1 5)q:+1(970t+2)A77(9) +6(1 - Q;-l(ea Ciy2))An(0 —1)
> n(0) — (1= 96)An(0)
= 5n(0) + (1 S0 + 1),

where the inequality follows because Ej, [n(@t)@t_l =40, ct+2] decreases in ¢;, (0, c;42) and

thus attains its lowest value when ¢}, (6, c;42) = 1. Also note that

By, (0000 =0+ L] = (0 +1) = (1= 0)gs (0 + 1, crsa) An(0 + 1) + (1 = 711 (6, €1:2)) An(©)
< n@+1)+5An(0)
= on(f) + (1 —0)n(0 +1),

where the inequality follows because Fj, |:77(ét)|5t71 =0+1, ct+2} decreases in ¢;, ; (0+1, ¢12)
and thus attains its highest value when ¢}, (041, c¢12) = 0. These chains of inequalities im-

ply AEEHSQ [W(5t+s—2>|97 Ct+2] = Ej, [77(515)|5t—1 =0, Ct+2] — L, [n(gt)|5t—1 =0+1, Ct+2] >
0.

Next consider % (i.e., s = 3). To show % < 0, it suffices to show
_ Ct+3 _ B Ct+3 N B
AEgt+1 [n(9t+1)|9,ct+2} = E§t+1 |:77(9t+1)|9t—1 = 9,Ct+2} - Egt+1 [U(9t+1)‘9t—1 = 9>Ct+2] > 0.
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Note that by the properties of conditional expectations,

F~

0141

0(Br1)[0r-1 = ‘97Ct+2} = B, [Eatﬂ {n(5t+1)|5t7ct+3} 001 = 9,Ct+2}

- E’étﬂ [n(5t+1)|5t =0, ct+3]

( —(1- i)q:—i-lﬁea C12) )
% E5t+1 |:n<9t+1)|(9t = 97 Ci+3
+ _Eb'tﬂ [n(5t+1)\5t =0+1, ct+3}
+0(1 — qz“ﬂ(@, Cit2))
X Eét+1 |:77(0t+1)|0t == 0 - 1, Ct+3:|
\ _E5t+1 [n(0t+1)|9t =0, ct+3]
> B, [n(5t+1)|5t =90, Ct—i—?,] (42)
(1 6) Egt+1 |:77(/§t+1)|’ét = 67 Ct+3:|
_E§t+1 |:77(,§t+1>|5t = 0 + 1, Ct+3:|

= o0k, [n(gtﬂ)’gt = 9>Ct+3:| (43)

+(1 - 5)E§t+1 [U(5t+1)’5t =0+1, Ct+3] )

where the inequality sign in (42) arises for the following reason; (i) £y, [E5t+1 [n(§t+1) |§t, Ct+3] |§t_1 =0, Cpyo
decreases in ¢ (f,ciy2). This is a consequence of having established, just above, that

E; [n(b})ﬁm — 9, cm} —E, {n(”e;)fe},l =041, cm} > 0 and Ej, [n@)@,l 91, ct+2] -

B3, [n(@t)|5t_1 =0, ct+2} > 0 (and thus, replacing ¢ + 1 with ¢, F, | [n(5t+1)|5t =4, Ct—&—S} -

E§t+1 |:7](§t+1)|5t =46 + ]., Ct+3i| > 0 and E§t+1 |:7](§t+1)|5t =6 — 1, Ct+3i| —F [n(5t+1)|5t = (9, Ct+3i|

0141
); (ii) consequently, By, [E~ [n(§t+1)|5t, ct+3] |5t_1 =40, ct+2] attains its lowest value when

0141
q2‘+1 (‘97 Ct+2) =1

Also by the properties of conditional expectations, we can similarly derive the following
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chain of relations:

By, n(0ie1)0 =0+ 1, Ct+2] = E [Egm [ﬁ(5t+1)|5t, Ct+3} i1 =60+ 1, Ct+2]
. E»ém K (”9;“)\”9} =0+ 1,011
Qt+1<9 +1,cr42)
9t+1)|9t =0+1 Ct+3]
9t+1)|9t =0+2 Ct+3}
qt+1 (0 +1,¢142))
{ 0t+1 1(00)|Be = 0, c1.5)

1(0:41)|0; = 0 + 1 Ct+3}

9t+1

9z+1

0t+1

< Eetﬂ 77(9t+1 |0t =0+1 Ct—&—S}
E5t+1 |:77(9t+1>’9t =0, Ct+3:|
— By, [100) 0 = 0+ 1, c0i)
= 5E5t+1 [n(gtﬂ)@t = 67Ct+3:| (44)

+(1—0)E5,,, [U(5t+1)|§t =0+1, Ct+3] -

+0

Comparing (43) and (44), we see that
B, . |n [ (0151)0r—1 = 0 Ct+2] > B, [ (41)|0r—1 = 0 + 17ct+2:| 5

which establishes %’i’;’“) < 0.
We have established the result for s = 1,2,3. Repeated application of the logic used in

the case of s = 3 establishes that when § = 0, aztaf% <Oforalls=1,..T—t. 1

Proof of Proposition 3:
We begin by establishing the following claim.

Claim 1 For any access prices ¢ = (c1,...cr), w(0,¢;) strictly increases in 6 for t =
1,...,T, and in particular ui(0,c) is strictly increasing in 6.

Proof. We will prove the result by induction. We first show the result holds for t = T" and
t =T — 1. Then we show that if the result holds for any t =T — 2,..., 2, it must then hold
for t — 1. From (8) we have % = —1/(0)D(cr) > 0 since 7'(8) < 0. Thus uz(0, cr) is
strictly increasing in 6. Now, consider t = 7' — 1. From (6)
ur—1(0,cr-1) = Hléelfé H(CT—l —n(0))D(cr—1) — F — I(qr-1) + Bur (0, cr)
qT—-1 5
—{—6 {(1 — 5)qT_1AuT(9, CT) — 5(1 — qT_l)AuT(Q — 1, CT)}
= max (cr—1 —n(0))D(cr-1) — F — I(gr-1)

qr—1€[0,1]

+5EET,1 UT(ET—L CT)|CT—1, QT—1,5T—2 =0
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By the envelope theorem

UT(éT—ly CT)|CT—1a QT—lng—Q =0

06

8UT—1(97 CT—1) 8E5

06

T-1

= —n'(0)D(cr1) + 8

Now note that given that gT_g = 0 is the state in period 7" — 1, then ET_l has one of three
possible realizations: ¢ + 1,0, and 6 — 1. Thus, an increase in 6 shifts the distribution

of 071 in the sense of first-order stochastic dominance. Because we just established that

L. L. . [UT(gT—lycT)‘CT—hQT—lyFéT—Q:G} L
ur (0, cr) is increasing in 6, it follows that =0 > 0, establishing

that % > (. Thus, we have established the result holds fort =T and ¢t =T —1. To
show it holds generally—and for u; (0, ¢) in particular— let’s assume that u,(6, c;) is strictly
increasing in #, and we will now show that u;_1(6, c;_1) is also strictly increasing in 6. From

(6)
u1(0,¢;) = max (¢_1—n(0))D(c;) — F — I(qi—1) + Bus(0, c;)

qt—1€[0,1]
+8{(1 = 0)g-18u (0, ¢;) — 0(1 — qr—1)Auy(0 — 1, ¢41)}
= max (thl - 77(9))D(Ct) - F— [(Qtfl) + 5E’9‘171 [ut(/étfla Ct)|ct717 Qt7175t72 =0|.

q:—1€[0,1]

EL
Or—1

By the envelope theorem

8ut,1(9, Ct) - , 8E’é’t_1 ut(et—b ct)‘ct—lv qi—1, 9t—2 =0
10.0) — o)D) + 5 - .

Note that gt,g = @ is the state in period t— 1, then 515,1 has one of three possible realizations:
0+1,0, and # — 1. Thus, an increase in 6 shifts the distribution of 8;_; in the sense of first-
order stochastic dominance. By the induction hypothesis u(0, c;) is strictly increasing in

OF:  [us(0s—1,¢t)ler—_1,q7—1,0t—2=0 .
0, it follows that b [0 A I 0, establishing that 24=1cc1) ~ o By
induction, u:(f, c;) is strictly increasing in 0 for t =7 — 2,..., 1, and in particular, u;(, c)
is increasing in 6.l m

We next establish:

Claim 2 W (0) is strictly increasing in 0, i.e., W (0 + 1) > W(6) for all 6.

Proof. From (11)

W (0) = mcaxz B W(e) — Q)+ (14 Nuy(0,¢) + 7 E;

5 [WOn.e] . (@)
For any ¢, and 6, the investments {¢,(f, c2)},_, (coupled with the depreciation rate &) gives
rise to a Markov process M (0, cs) that begins in state § and generates random variables
01,...,07. Let c*(0) = (¢;(0),...,c¢n(0)) and c*(0 + 1) = (¢;(0 4+ 1),..., (0 + 1)) solve
the optimization problem in (45) for a given # and corresponding ¢ + 1. Because c*(0) is
a feasible but not necessarily optimal solution to the regulator’s problem when the initial
state is # + 1 then necessarily

WO+1)>> B [B(er) — Q + (1+ Nus(0+ 1,¢(0) + 7B, |W(0r)|0+1,¢5(0)| -
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Subtracting W () from each side of the inequality above and using the expression for W ()
and simplifying implies

E;, [W(ET)W +1, c;(e)]

W(O+1) = W(0) > (1+2) [ ~ B, [W(Or)16,c3(0)]

u1(0+1,c*(6)) } T
—u(@.c @) |77
As we have just shown in the previous claim, u; (0 + 1,¢c*(6)) — u1(0,c*(#)) > 0. Thus

| B, [W(ET)W T, c;(e)}

WOD=WO=5 Wi,

For a given sequence of transition probabilities, the stochastic process governing ET given
that we start at 6 + 1 is the same as the stochastic process governing 61 + 1 given that we
start at . Thus

By, (WO +1,¢50)| = By, [W(0r)10,e5(0)| = B;, [W(Or +1) = W(Er)|0, c3(0)]
Thus, the inequality above can be written as

W(+1)—W(0) > 5B, [W(b’T 1) — W(0r)]6, c;(e)] (46)

Now, this inequality holds for all # and in particular it holds for all realizations of ET that
could arise conditional on starting at #. This implies

B [W(@T 1) — W(0r)6, c;(e)} > g7 [EET [W(ET +1)}6, 03(6)} ~ B, [W(ET)\H, c;(e)H

Since 37 € (0,1), this necessarily implies that Eg. [W(@T +1) — W(67)|6, c;(e)] > (0. This
is because the inequality could clearly not hold if £ [W(gT +1) — W(67)|6, c;(e)} =0, and
if B [W(ET +1) — W (o), c;(e)] < 0, then dividing each side by F;_ [W(éT +1) — W (0|6, c;(e)}
implies 1 < A7, which cannot hold. Thus (46 implies W (0 +1) — W (6) > 0.l =

To complete the proof, recall that Proposition 2 established that investment ¢; (-, c;11)
in each period ¢ of the regulatory cycle (except the final period 7" when investment is zero)
decreases in the access prices ¢;41 = (C441,...,cr) in the subsequent periods. Thus an
increase in ¢; decreases ¢; (-, ¢2), q5(-,¢3), ..., ¢ 1 (-, c;) for any realization of the sequence of
random variables {#,}7-'. A decrease in ¢, thus increases the likelihood that productivity
increases between any two periods prior to period 7'. A decrease in ¢; thus causes an upward
shift the distribution of the random variable 67 (conditional on initial productivity 0y = 0)
in the sense of first-order stochastic dominance. Because W (-) increases in its argument, it

OB~ [W(01)|6,c
follows that $<O,t:2,...,f |

Proof of Proposition 4: Let q(6) = {¢(6;_1)|6}", denote the Markov process over
investment levels when the realization of initial productivity o is 0. In other words, q(6)
is a vector of time-contingent, state-contingent, investment levels. A particular such vector
is the set of investment levels chosen by the firm when the access prices are c¢: q*(6,c) =
{g (5,5_1, ci+1)}!, and thus the firm’s problem in a regulatory cycle can be written as a
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choice of q(f). By (6) and the Principle of Optimality, q*(#, ¢) maximizes u;(6,q(#)), and
thus if we have interior investments

du(0,q(0))

=0, forallt=1,...,T —1,all realizations of 5t_1.
q(01-1)

a(6)=q*(0,c)

(47)

Now, the distribution of 67 thus depends on q(f) and we can rewrite By, [W(ET)|9, co| as

By, [W(07)|a(0)]a(0)=q (6.0

OE; [W(61)6,c2]

Fix a particular ¢, and write e, as follows:

i 0B, [W(br)|a(®)] g7 (0,¢2) |
o on ‘q(@):q*(e,c) qlactCQ
. % OE; W (01)la(0)] g3 (01 ¢
0L, W (0r)l6, o] +Zb1{‘ﬁﬁaav—‘MWF¢””}‘ﬁ%%ﬁ (48)
aCt + ’
OE; W (Or)la(®)] 0a7 1 (Br_,c)
+Z5m{ Sa ) |q<">q*<970>} —

where the summations indicate summations over states. For example, assuming 6 € (6, 0),

0, takes on possible values, max{f —1,0},0, min{0 + 1,0}, and the second line in (48) would
be

0E;_[W(6r)|a(0)] 0g% (max{0—1,0},c3)
{ 8qZ?maX{9—1,Q}) |q(0):q*(0,c) 2 ey =
0B, [W(07)|a(0)] 0q5(0,c3)
9q2(0) la(0)=a*(6.c) dc

oE; [W(07)la(0)] g3 (min{0+1,0},c3)
+{ Baa win 0 LOY) "‘(e)q*(e’c)} b

Given Propositions 2 and 3, at least one of the terms in curly brackets in (48) must be
o1 (W (0r)la(0)

oG la@)=a0e) > 0.
Now, let us use the formulation in which the regulator’s discounted welfare and the firm’s
discounted profits depend on the vector q(f) of state-contingent investments. We can write
the regulator’s discounted expected welfare as

positive, indicating that for at least one period s € {1,...,t},

T

W(O,a0)) = > 5" [T(er) — Q) +wi (0, a0) + BE;, [W(0r)a(®)],

t=1
The derivative of the regulator’s welfare with respect to an investment in a particular time
s < T and state 0,_; is

oW (0, a(6) _ dmi(6,a(0))  ,0Fs, W (0r)la(6)]

QS(95—1> QS(Gs—l) 8QS(95—1)
Evaluating the above derivative at q(f) = q*(¢,c) and using (47) gives us

oW (6,4(0))

%051) lqo-av00)

0E; [W(07)|a(0)]

aQS (55—1)

36
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By the result just established for any there must be some s and realizations of 55_1 for which

0B [W(6r)|a(6)] W (0,q(6))
00:0:-0) | ) ar00) and hence =67 a(0)=q*(0,¢)
prior to the and one state, the regulator prefers more investment than the firm actually

makes.H

> 0. Hence, in at least one period

Proof of Proposition 5: R

The result follows immediately from part (a) of Proposition 3 (which implies &,(6, ¢2) <
7,(0,¢2)), equations (5) and (12), and the property that °(n) decreases in 7.l
Proof of Proposition 6:

Since ¢°(+) is strictly increasing, it follows that

c;(0) = (&0
< "@,00,c9)
<

(

_ *

where (a) the first equality follows directly from (5) and (12); (b) the first inequality follows
because, as established in Proposition 3, Et(ﬁ ,C2) < 1,(0, ca); (c) the second inequality follows
because when because when § = 0, the expectations of marginal cost must decline, i.e., so
7,(0,¢2) < n(6).m

Proof of Proposition 7:

If T = 1, Proposition 1 implies that the firm does not invest. With no depreciation,

productivity never changes, and since c¢j(0) = °(n(6)), we have W'(0) = °’01(+(ﬁ9)). Using
(15), we have
, i BT w(en (0, €2)) = w(n(0))}
W) — W' (0) = max T Y AT+ NE;, [I<Qt(9t—1, ci41))]0, CZ]
+47 | g, [WT(0r)16, 2 — w7(0)]
(49)

To proceed, we establish the following result:

Claim 3 Consider two multivariate functions f(x) and g(x) such that g(x) > 0 for all x.
Then

max [(2) + g(a)] > mae (o).

Proof. Let
H(p) = max [f(x) + ¢g(x)]

where ¢ € [0,1], and let x*(¢) be the optimal solution. By the envelope theorem H'(y) =
g(x*(p)). Since g(-) > 0 we have H'(p) > 0, and thus

H(1) = max [f(00) + g(00)] > max f(x) = H(0).
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Applying this result to (49), we have

Sy B Hw(en 1,8, €2) — w0 ((6))}
W(0) - W'(0) = max _1 XL AT NE [ (0 1,ct+1))\9,<:z}
o +47 [E-é [WT(§T>|9 cg} . )}
o L Sy B Hw(en 7,0, €2) — w0 ((6))} 0
T ctpeer 1—5 Zt B e 1(1+>‘)E~ _ [ (Qt(et 1act+l))‘eﬂc2]

The inequality follows from the claim just proven and Fj_ [WT(HVT)W, C2:| — WT() > 0.
This latter inequality holds because: (i) as established shown in the proof of Lemma 3,
the regulator’s value function is strictly increasing in #, and (ii) by assumption there is no
depreciation, so any realization of 5T conditional on the initial state being 6, must be at
least as large as 6.

Now an implication of (6) is that for any state 6 at the start of a regulatory cycle, the firm
can be thought of as choosing a set of state-contingent investments q(0) = {q1(0), g2(6), g2(0+
D), .., qr-1(0),qr—1(0+1),...,q7-1(0 +T —2)} that maximize the discounted present value
of its expected profit for any schedule co of access prices it faces. (Recall that in the terminal
period T, there is no investment and also recall that the price ¢; in the first period of the cycle
does not affect investment decisions.) Any such choice induces a probablhty distribution over
the the sequence of random variables {60, 01, ) GT 1} conditional on (90 = 6, and thus deter-

T
mine the expectations of marginal cost {Eg [n(@t_l) 10, q(0 )] } . When q(6) equals firm’s
t—1 t=1

optimal investment strategies {¢; (gt_l, ci11)}, the expectations of marginal cost are the ob-

jects {7,(0, ¢2)},_,. Now, because 3/_, 3! {w(ct,’ﬁt(Q, c2)) — (L+AN)Ep, | [I(qt(gt,l, cii1))lb, CQ] }
is discounted downstream surplus (which does not depend on investment) plus (14 \) times
discounted expected profit evaluated at the firm’s optimal investment strategies {q;(0;-1, ct+1)},

it follows that the firm’s optimal investments {g;(6;_1,¢,11)} in (50) are the maximizers of
the objective function in ((50). We can thus rewrite (50) as

W) -w(®) > max 1 o ﬁt_l{ wlce, B, [ (5t—1)’97Q(9)}) —wo(n(e))}
= erera®) 1 — 37 ~ YL BT VB, [ Ha@e)l0 a(0)]

(51)
A feasible but not optimal solution to the optimization problem in (51) is ¢; = °(n(6)),

t= 17 7T and q(e) = {Q1(9)7 QQ(9)7 Q2<9+1>7 SR QTfl(e)a QT71<9+1)7 s 7QT71<9+T_2>} =
{0,...,0}, i.e., set all prices to the first-best level given the initial marginal cost and set all

investments to zero. This would imply Fj | [n(@t,l)w,q(ﬁ)] = n(#) for all ¢, and since

by definition, since by definition, w®(n(#)) = w(c’(n()), with this solution, the objective
function in (51) attains a value of zero. Thus,

s 1 ZtT:1 gt {w(ct, B, | [77(5#1)’9, q(@)}) - wo(n(H))}
cryera®) 1 — AT B Zle g1+ >\)E§t_1 [I(Qt(at—l))|9, q(g)}

> 0,

so WT(9) — W) > 0.1
Proof of Proposition 8:
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When A — oo, investment becomes arbitrarily small for any access prices and realizations
of productivity, i.e., ¢;(0;_1, c;+1) — 0 for any regulatory lag. In addition, for any productiv-
ity realization, qO(Et_l) — 0. This implies that a continuous regulatory review, 7' = 1, im-
plements the first-best solution, i.e., W(6) = W°(6).3® Thus, W'(9) — W7 (0) = DWL*(9).
Moreover, from (16) and (18)

DWLT(9) = SE™(6) + 5" By, | DW L(Br) [0 = 0,0°(9) = 0] . (52)

T

Even though investment is zero, because 0 > 0, the productivity process {'0}_1} is still
t=1
stochastic (with productivity destined to decrease over time). Thus, there is a positive

probability in periods t = 2, ..., T that there are some realizations of 0, for which n(gt_l) +
n,(0) = E5,_ n(0,-1))|60 = 6, q*(8) = 0| .3° For such realizations,

P01 )I0) = 0) = maxele,1Fr-1)) > w(EFL0)), 1P ).
Since ¢} (0) = °(7,(0)), it follows that for periods t = 2,...,T,

Ep , [« B-0)lfo = 0.6°0) = 0] > By, |w(ci(7(0)).m(B.1))][fo = 6.q7(6) = 0]

= w(ct(:(0)),7,(0)),

which from (17) implies SET(f) > 0. To complete the proof we need to show that this implies
DWLT(#) > 0. This follows from an induction argument. Specifically, for § = 6, there is
zero probability that productivity decreases, and DW LT () = SE”() + 8" DW L(6),s0

DWLT(9) = 51’{;@ > 0. Similarly,

DWLT(@+1)=SET(@+1)+ 87 [(1—6)DWL(@+1) + SDWL(9)],
or
SET(0+ 1) SDWL(6)
1-(1-0)p" 1-(1-6)p8"
This establishes that DW LT (0) and DW LT (6 + 1) are positive. The induction hypothesis is

that DW LT (0 —1),..., DWL"Y(0) are positive. This then implies that DW L (9) is positive
because

DWLT(0+1) =

-0
DWLY(0) = SE™(0) + 87 (1 — 0)DWL" () + > a;,DW LT (0 — i),
i=1
where a; are probabilities that are between zero and one. It follows that W1(6) — WT(0) =
DWLT(6) > 0.1

38 Hereafter in the proof, any statements of equality refer to equality in the limit as A — oo.

39Because investment is zero in the limit, the object 7,(6,c3(0))—the expectation of marginal cost in
period t conditional on the productivity at the beginning of the regulatory cycle being 6—mno longer depends
on the access prices, so we write it without the ¢5(0) argument.
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Figure 2: Percentage of parameterizations satisfying various properties across the paramter
grid G.
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Figure 3: Percentage of parameterizations for which W7+ > W7 (at § = 15) across the
paramter grid G, holding a single parameter fixed at a particular value.
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Figure 4: The regulator’s welfare W7 (0) for T =1,.. ., 10.
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Figure 6: Each panel shows W7 (0)—the regulator’s value function with a cycle length T—
and WTT(9)—the regulator’s value function when for a one-shot deviation to a cycle length
T, followed by a return to cycle length 7" in the future.
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