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Abstract

This paper studies a stochastic dynamic game of regulatory price setting with par-
tial commitment. A regulated �rm makes investments each period that stochastically
reduce its marginal costs. The in�nite horizon over which the �rm and the regulator
interact is divided into regulatory cycles that last for T -periods. At the beginning of a
cycle, the regulator commits to a T -period schedule of access prices and a lump-sum
transfer to maximize a weighted welfare function, subject to the �rm�s participation
constraint. It cannot, however, commit to schedules for subsequent regulatory cycles.
Regulatory lag and access prices each a¤ect the �rm�s investment but in di¤erent ways.
Investment in any period of the cycle (except the last) decreases in the variable access
charges in all subsequent periods of the cycle (the "Arrow e¤ect"). Recognizing this,
the regulator distorts the schedule of variable access charges downward relative to what
it would choose if it maximized welfare within the cycle. The optimal variable access
charge is less than the static-�rst price corresponding to the expected marginal cost for
that period. Regulatory lag induces an additional source of static ine¢ ciency besides
the traditional one (prices within a cycle not tailored to changes in actual productiv-
ity). Computational analysis reveals that as inducements to investment, regulatory
lag and access prices are usually substitutes rather than complements. The regulator
prefers a longer lag to a shorter lag except for extreme parameterizations. However,
there are diminishing returns to regulatory lag, with most of the gains achieved with
lags no greater than 5 to 6 years.

1 Introduction

In the 1980s and 1990s, as countries around the world privatized or deregulated vital in-
frastructure such as railroads, airports, and telecommunications systems, an elegant and
powerful mechanism for regulating natural monopoly �rms emerged: price cap regulation
(Littlechild 1983, Beesley and Littlechild 1989, Cabral and Riordan, 1989, Brennan, 1989,
Linhart and Radner 1992, Armstrong, Cowan, and Vickers 1994). Price cap regulation has
two distinct economic features: a �xed length of time between regulatory reviews� regulatory
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lag� and a schedule of price caps that decline in real terms� the X-factor.1 Regulatory lag
changes the nature of the regulatory interaction from a cost-plus contract to a �xed-price
price contract, and in so doing it strengthens incentives for cost e¢ ciency, an insight that
emerges from both the literature on rate of return regulation (Baumol and Klevorick 1970,
Bailey 1974) and the mechanism design literature (e.g., La¤ont and Tirole, 1984, 1993, and
Cowan 2002). The X-factor can ensure that the �rm shares some or all of the bene�ts from
improved e¢ ciency with consumers, an insight comes from the literature on non-Bayesian
regulatory mechanisms (Vogelsang and Finsinger 1979, Vogelsang, 1989).
This paper studies a stochastic dynamic game of regulatory price setting in which reg-

ulatory lag and the price schedule play prominent roles in motivating a �rm to make
productivity-enhancing investments. Our model consists of a regulated network �rm that
provides access to bottleneck infrastructure and a regulator that sets the price of access,
which is paid by downstream operating �rms that provide a service to end consumers.2 The
regulated �rm makes investments each period that stochastically improve the productivity of
its network and reduce its marginal costs. The regulator perceives that it is in a continuing
relationship with the �rm over the in�nite horizon. It is an active player in the game that
seeks to maximize expected social welfare, subject to satisfying the network �rm�s partici-
pation constraint. The horizon over which the �rm and the regulator interact is divided into
regulatory cycles that last for T -periods. Prior to the beginning of a new regulatory cycle,
the regulator reviews the �rm�s operating capabilities and veri�es its productivity. Based
on this veri�ed productivity, the regulator commits to a T -period schedule that speci�es a
price for each period of the cycle. This schedule is an analogous to the choice of an X-factor
in price cap regulation.3

Our paper makes four contributions to the literature on price cap regulation. First, we
highlight that while regulatory lag and the schedule of access prices both create incentives
for more investment, they work di¤erently. For the �rst T � 1 periods of the regulatory
cycle, the �rm e¤ectively faces a �xed-price contract, while in period T it faces a cost-plus
contract. In the �rst T �1 periods, therefore, the interests of the regulator and the regulated
�rm are fully aligned when it comes to investment: marginal social welfare from increasing
investment is the same as the marginal expected pro�t of the �rm.4 A longer regulatory lag
is valuable to the regulator because it lengthens the period of full alignment.
The access charges, by contrast, directly increase the return on productivity-enhancing

e¤ort because the bene�ts of cost-reducing investment in period t are magni�ed when the
�rm produces more in the remaining periods t + 1; : : : ; T of the regulatory cycle. However,
cost-reduction in the current regulatory cycle is not the reason the regulator uses the access
charges as an incentive device. If the regulator�s horizon was limited to the current cycle, it

1One could argue that price cap regulation had a third distinctive feature: delegation of pricing decisions
to the regulated �rm so long as it adheres to the cap, i.e., pricing discretion. However, pricing discretion is
not necessarily a feature of all applications of price cap regulation, and it is not necessarily the case that it
is welfare-optimal for the regulator, even when the �rm has hidden information. See Armstrong and Vickers
(2000) or Armstrong and Sappington (2007) for extensive discussion of pricing discretion.

2A special case of our model is a traditional regulatory pricing setting in which the network �rm is
vertically integrated and sells to end consumers directly.

3The price schedule is not precisely the same as an X-factor because the schedule speci�es the access prices
themselves, not caps. Moreover, the prices in the schedule need not change at a constant percentage rate.
Still, the price adjustments in the tari¤ schedule partly re�ect expected reductions in marginal costs over
time due to the �rm�s investments, and thus, like X-factors in price cap regulation, they share prospective
gains in productivity with consumers.

4However, they are not aligned when it comes to the access tari¤because the regulator�s objective function
is social surplus, while the regulated �rm cares only about its own discounted pro�t.
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would not need to distort the access prices to create additional investment incentives. Nor
would it need to distort prices if regulatory lag was in�nite. In both instances� which have
the common feature that the regulator and the �rm operate with the same time horizon�
the marginal investment incentives of the �rm and regulator would be fully aligned. The
use of the access prices as an incentive device arises when the regulator recognizes that the
bene�ts of cost-reducing investment in the current cycle accrue to future cycles, while the
�rm (because the expected present value of its pro�t is reset to zero at the beginning of each
new cycle) internalizes investment bene�ts only within a cycle. Our model thus highlights an
aspect of regulation that has been underemphasized in the literature on price caps: linkages
across regulatory reviews and the bene�ts of designing current policies (including X-factors)
that can improve society�s position for future reviews.
Second, we show that the use of a price schedule as an incentive device worsens the tra-

ditional trade-o¤ between static e¢ ciency and dynamic e¢ ciency that arises under price cap
regulation. (That is, regulatory lag encourages investment, but it prevents price from being
tailored to the changes in productivity that result from greater investment.) That trade-o¤
arises in our model, but we show that there is an additional source of static ine¢ ciency. Even
if the �rm�s actual productivity equaled its expected productivity in a particular period of
the regulatory cycle, the price, which is distorted to encourage more investment, would still
be less than the one that maximizes welfare in that period. This worsens static ine¢ ciency.
Third, while regulatory lag and the price schedule could be substitutes or complements

when it comes to creating investment incentives, in computing equilibria over a wide swath of
parameter space, we �nd that they are much more likely to be substitutes than complements.
This implies with a longer regulatory lag the changes in prices within a cycle are more likely
to purely re�ect productivity changes than would be the case with a shorter lag.
Fourth, our analysis highlights that regulatory lag is an enormously and robustly powerful

incentive device. We show that a longer lag does not necessarily increase welfare. However,
in our computational analysis, we �nd that it takes extreme parameter values for shorter lag
to increase social welfare (e.g., extremely high marginal investment costs and virtually no
value created in the vertical structure), and even then, the gain from shorter lags is minimal.
When when we compute equilibria over a wide range of plausible parameter values and for
regulatory review periods ranging from one year to eight years, we �nd that expected social
welfare is nearly always higher for a longer regulatory lag.
We also endogenize the lag by allowing the regulator to choose its most preferred lag

at the beginning of a regulatory cycle. In other words, the regulator no longer commits
to �xed lag but instead chooses a lag that optimizes discounted welfare for any particular
productivity level that is revealed during the regulatory review. When we compute the
regulatory equilibrium for our baseline parameterization, we �nd that the regulator chooses
the longest feasible lag whatever the review reveals about the �rm�s productivity.
Our paper adds to that portion of the literature on regulatory price setting in which the

regulated �rm is modeled as a dynamic optimizer who anticipates how its current decisions
will shape its future costs as well as future regulatory decisions. In these models, produc-
tivity or costs evolve stochastically and endogenously through time, which in turn induces
endogenous evolution of regulated prices. Related papers include Lima and Gómez-Lobo
(2010), Pint (1992), and Biglaiser and Riordan (2000). Our paper is most closely related
to those by Linhart, Radner, and Sinden (1991) (hereafter LRS) and Armstrong, Rees, and
Vickers (1995) (hereafter ARV). LRS model a dynamic game between a regulator the man-
ager of a regulated �rm. Similar to our model, the manager in LRS makes non-contractable
decisions over time that can stochastically increase the �rm�s productivity. In contrast to
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our model, the regulator does not seek to maximize an explicit objective but instead follows
a rule that entails decreased prices over time and which motivates the manager to increase
productivity. ARV also formulate an explicitly dynamic game between the regulator and the
regulated �rm, and like our model, they assume that the regulator maximizes welfare over
the in�nite horizon. In ARV, the regulated �rm�s marginal cost in any period can either
be high or low, and the �rm makes cost-reducing investments that can reduce the �rm�s
marginal cost if it is high or keep it low if it is low. The regulator commits to a regulatory
review period and sets a �xed price over this period. Through time, the regulator adjusts
its review period and �xed price as circumstances evolve. Our model di¤ers from ARV�s
in three respects. The �rst is minor: ARV assume a one-part tari¤, while we assume that
the �rm can receive a lump-sum subsidy.5 Second, ARV assume that the regulator sets a
uniform price over the entire regulatory horizon, while we allow the regulator to set a time-
varying schedule of prices over the review period. This enables us to study the bene�ts of
using prices as an incentive mechanism.6 Finally, we have a richer state structure than ARV,
with multiple cost states, instead of two. This enables us to do computational analysis with
empirical plausible parameter values to gain insight into practical policy design issue such
as the relative magnitude of gains from increasing regulatory lag.
The remainder of the paper is organized as follows. Section 2 describes the model. Section

3 states a series of general results on the Markov perfect equilibrium. Section 4 reports the
results from our computational analysis. Section 5 considers an extension of the model in
which we consider the case in which the regulator cannot commit over time to a �xed value
of T , i.e., T can vary from regulatory cycle to regulatory cycle. Section 6 summarizes and
concludes.

2 Model

We consider a vertical structure consisting of end consumers who purchase a service from
N downstream operating �rms, who in turn rely on a regulated network �rm for access to
bottleneck infrastructure. For example, as in the U.K., the operating �rms could be freight
railway undertakings in a vertically separated rail system, and the network �rm could be
the railway infrastructure manager. We normalize so that one unit of downstream service
requires one unit of infrastructure access.

2.1 Downstream surplus

When operating �rm i pays the regulated price c to access the network, its total costs are
(c+ �i)Qi + fi, where �i is a marginal cost of operating, and fi is a �xed operating cost.
Downstream operating �rms are assumed to attain a Nash equilibrium in prices, which in
turn implies an equilibrium quantity D�

i (c) for each �rm i and a market demand for network
access given by D(c) =

PN
j=1D

�
j (c).

7

Downstream social surplus is the sum of end consumer surplus and downstream �rm
pro�t, 	(c), less the social cost 
 = (1 + �)

PN
i=1 f subsidies provided to downstream �rms

5Later in the paper, we discuss how our results would change if we had one-part pricing.
6ARV brie�y consider the possibility of time varying prices at the end of their paper.
7Letting Qi(P1; : : : ; PN ) denote �rm i�s demand function, the Nash equilibrium prices P �1 (c); : : : ; P

�
N (c)

are given by P �i (c) = �i + c�
D�
i (c)

@Qi(P
�(c);:::;P�(c))
@Pi

; i = 1; : : : ; N , and D�
i (c) = Qi(P

�
1 (c); : : : ; P

�
N (c)).
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to cover their �xed costs, where � � 0 is the marginal cost of public funds.8 Consumer
surplus plus downstream pro�t is

	(c) � V (D�
1(c); : : : ; D

�
N(c))�

NX
i=1

�iD
�
i (c)� cD(c);

where V (�) is the gross bene�t function of a representative end consumer.9 Utility maxi-
mization by the representative consumer and pro�t maximization by downstream �rms can
be shown to imply

	0(c) = �D(c) +
h
P
�
(c)� (�(c) + c)

i
D0(c); (1)

where P
�
(c) =

PN
i=1

D�0
i (c)

D0(c) P
�
i (c) and �(c) =

PN
i=1

D�0
i (c)

D0(c) �i are weighted averages of the equi-
librium prices of the operating �rms and their marginal costs, respectively.10

2.2 Productivity and investment

The network �rm�s pro�t in period � is (c��e�� )D(c� )�F�I� , where e�� � �(���1) is period-
� marginal cost which depends on the realization of a productivity draw e���1. The �rm�s
�xed cost consists of an exogenous component F and endogenous productivity-enhancing
investment I� in period � . We let � denote a particular realization of productivity, where
� 2 [�; �], and � >> �. We refer to � as the �rm�s state. Increases in productivity reduce
marginal cost, i.e., �0(�) < 0. Let ��(�) � �(�) � �(� + 1) denote the cost saving from a
one-unit improvement in productivity.
Following Doraszelski and Besanko (2004), the productivity draw in period � is given

by e�� = ���1 + e�� , where e�� 2 f�1; 0; 1g is a productivity shock. Productivity can thus
increase or decrease by at most one unit per period from its current level. This Markovian
productivity process implies that the past history of productivity change is summarized in
current productivity. This has a plausible implication: while the current period�s investment
in productivity enhancement can potentially shape the trajectory of future productivity
realizations, its e¤ect will not be extreme. Thus, productivity will evolve gradually, a sensible
characteristic, we believe, for regulated infrastructure networks.
The probability distribution of the productivity shock is given by

Pr(e�� = 1) = (1� �)G(I� )

Pr(e�� = 0) = 1� (1� �)G(I� )� �(1�G(I� ),

Pr(e�� = �1) = �(1�G(I� ));

where � is an exogenous parameter we refer to as depreciation, and G(�) is a strictly increas-
8The assumption that downstream �rms are subsidized to cover their �xed costs is not essential to our

analysis, but it simpli�es notation a little.
9We assume that end consumers have a quasi-linear utility function V (Q) + Z where Q is the vector of

quantities provided by downstream �rms, and Z is a numeraire. The bene�t function V (�) is assumed to be
increasing in the quantities Qi and strictly concave.
10An alternative formulation of our model would be to assume that the regulated monopolist sells directly

to end consumers. In that case, �i = 0, and P
�
(c) = c. We thus have the familar result that 	0(c) = �D(c).

In addition, because there is no subsidy to downsteam �rms, � = 0.
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ing, strictly concave function with G(0) = 0 and limI!1G(I) = 1.11 We further assume
that for all I 2 [0;1)

G0(I) =
1




1�G(I)

G(I)
; (2)

where 
 > 0 is a parameter. This formulation satis�es the Inada conditions limI!0G
0(I) =1

and limI!1G
0(I) = 0.

It is convenient to think of the �rm directly determining q� = G(I� )� which hereafter
we refer to as investment� and in doing so, it incurs a total cost I(q� ) = G�1(q� ). The
associated marginal cost of investment is thus I 0(q� ) = 1

G0(I(q� ))
. Given (2), I 0(q� ) = 
 q�

1�q� ,
and the associated total investment cost is I(q� ) = 
 [�q� � ln(1� q� )].

2.3 Static optimum

As a benchmark, consider a static model in which marginal cost equals �, and the regulator
determines a price c. We assume that the regulator also provides the �rm with a lump-sum
subsidy A. In practice, infrastructure network providers are often subsidized by government.
For example, the U.K. rail network provider, Network Rail, receives 70 percent of its funding
from government grants (Network Rail 2021). Similarly, in the Dutch railway system, the
network �rm ProRail railroad receives about 58 percent of its revenue from government
allocations (Statistica, 2018). An alternative interpretation of the subsidy applicable to
airports is that the regulator uses single-till regulation in which a forecast of revenue from
an airport�s non-aeronautical activities such as retail establishments and parking is included
along with revenue received from landing charges to airlines to determine the airport�s overall
revenue requirement. Under this interpretation, A would be the commercial revenue forecast
approved by the regulator.
The �rm is assumed to have the option to exit the market. If it does, it receives a per-

period pro�t normalized to zero. Exit is assumed to be su¢ ciently costly to the regulator
that it will choose the price and subsidy to satisfy the network �rm�s participation constraint.
The network �rm�s pro�t is (c � �)D(c) � F + A, where F is its �xed operating cost.

The regulator�s objective is a weighted sum of downstream surplus (less the social cost of
the network �rm�s subsidy) and network �rm pro�t, with the welfare weight on the latter
denoted by  , and  2 [0; 1):

	(c)� 
� (1 + �)A+  [(c� �)D(c)� F + A] : (3)

11For the boundary cases in which ���1 = � and ���1 = �, the probability distribution of e�� extends in
the natural way. When ���1 = �

Pr(e�� = 1) = (1� �)G(I� )
Pr(e�� = 0) = 1� (1� �)G(I� ),
Pr(e�� = �1) = 0;

and when ���1 = �;

Pr(e�� = 1) = 0

Pr(e�� = 0) = 1� �(1�G(I� )
Pr(e�� = �1) = �(1�G(I� )):
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The regulator chooses c; A to maximize (3), subject to the network �rm�s participation
constraint, (c��)D(c)�F +A � 0. Because the weighted welfare function strictly decreases
in A, the participation constraint must bind. The static welfare optimum c0(�) thus solves

max
c
!(c; �) � 	(c)� 
 + (1 + �) [(c� �)D(c)� F ] : (4)

Using (1), the solution is characterized by the condition12.

c0(�) = � � �

1 + �

D(c0(�))

D0(c0(�))
� P

�
(c0(�))� �(c0(�))� c0(�)

1 + �
; (5)

The optimal �



�
(1� �)�ut+1(�; ct+1)
+��ut+1(� � 1; ct+1)

�
price c0(�) must increase in �.13 As is standard

in full-information models of optimal regulatory pricing, the solution is independent of the
welfare weight  but not the social cost of public funds �.14 The static optimal price could be
less than marginal cost to counteract market power exercised by the downstream operating
�rms (La¤ont and Tirole 2000).15 Throughout, we let !0(�) � !(c0(�); �) denote maximum
static welfare when marginal cost is �.

2.4 Regulatory dynamics

Figure 1 illustrates the timing of the game between the �rm and the regulator. The �rm
makes investment decisions every period. Every T periods (the regulatory lag) the regulator
observes the �rm�s productivity and then commits to a schedule of access charges c =
(c1; : : : ; cT ) and a lump-sum subsidy A.16 This process repeats itself over the in�nite horizon.
For now the regulatory lag T is exogenous; later we relax this assumption and allow the
regulator to determine T . While � indexes time more generally in our model, we let t =
1; : : : ; T denote a typical time period within the interval between reviews� what we call the
regulatory cycle.
The �rm�s productivity in period t of a cycle is e�t�1. The �rm�s investments qt are

unobservable to the regulator, and except for e�0, so too are the realizations of fe�t�1gTt=1.
12The second-order condition for the static welfare maximization problem, !00(c0(�)) < 0, can be shown

to hold if and only if

m�(c0(�)) + 2�� �D(c
0(�))D00(c0(�))

[D0(c0(�))]
2 > 0;

where m�(c0(�)) � dP
�
(c0(�))
dc � d�(c0(�))

dc is the net pass-through rate for downstream �rms. This condition
holds if the demand functon is concave, linear, or �not too�convex.
13Di¤erentiating the �rst-order condition !0(c0(�)) = 0, with respect to � and rearranging terms gives us

dc0(�)
d� = � (1+�)D(c0(�))

!00(c0(�)) > 0, since the second-order condition of the static welfare maximization problem

implies !00(c0(�)) < 0.
14This is because when � = 0 and  2 [0; 1), the regulator is indi¤erent between increasing the network

�rm�s overall pro�t via an increase in its operating pro�t (c � �)D(c) � F (through c) or by increasing its
subsidy A. By contrast, when � > 0, the regulator strictly prefers to increase the network �rm�s pro�ts by
increasing its operating pro�ts rather than increasing its subsidy.
15In an alternative formulation of our model in which the regulated monopolist sells directly to end

consumers (which as noted above entails � = 0) and the regulator maximizes a weighted sum of consumer
surplus and the regulated �rm�s pro�t, with a smaller weight on the latter, then the participation constraint
will bind, and condition 5 reduces to the traditional e¢ ciency condition c0(�) = �.
16We show in the Online Appendix that there is no loss of generality in assuming the �rm receives a single

subsidy every T periods as opposed to a sequence of subsidies At for t = 1; : : : ; T .
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Before a new cycle begins, the regulator reviews the �rm�s assets and operating capabilities,
enabling it to observe the productivity realization e�T = � emerging from the last period
of the just-ended regulatory cycle. (This realization of e�T becomes the (singleton) support
of the �rm�s productivity e�0 in the �rst period of the next cycle.) Based on this observed
productivity, the regulator sets the schedule of access charges for the upcoming cycle and
determines the subsidy. The regulator�s objective is to maximize discounted expected social
welfare over the in�nite horizon. The regulator and the �rm use a common discount factor
� 2 (0; 1).
As in the static benchmark, the network �rm has the option to exit the market, and

receives a discounted stream of pro�ts equal to zero if it does. Using Baron and Besanko�s
(1987) concept of fairness, we assume that as long as the access pricing schedule and subsidy
provide the �rm with an expected present value of pro�t over the horizon of the regulatory
cycle at least as large as the �rm�s outside option, the �rm is legally bound to remain in the
market for each period 1; : : : ; T following a regulatory review.17

The regulator is a strategic player in this game, and as such, it behaves optimally given
the information it observes. The regulator cannot commit to future schedules access tari¤s
beyond period T , and because it cannot observe the realizations of fe�t�1gTt=2, the regula-
tor cannot commit to a schedule (c(fe�t�1gTt=2); A(fe�t�1gTt=2) of state-contingent access prices
and subsidies.18 The upshot is that the regulator has partial, but not complete commit-
ment ability. The longer the regulatory lag T , the greater the degree of the regulator�s
commitment.

2.5 Regulated �rm�s investment problem and Bellman equation

Let ct = (ct; : : : ; cT ) denote the access charges that remain to be implemented in any period
t = 1; : : : ; T � 1 of the regulatory cycle prior to the last period. If realized productivity
in period t is � 2 (�; �) (i.e., e�t�1 = �), the �rm�s optimal investment program can be
summarized by a Bellman equation

ut(�; ct) = max
qt2[0;1]

(ct � �(�))D(ct)� F � I(qt) + �ut+1(�; ct+1)

+� f(1� �)qt�ut+1(�; ct+1)� �(1� qt)�ut+1(� � 1; ct+1)g ; (6)

where ut(�; ct) is the present value of the network �rm�s operating pro�ts (exclusive of the
monetary transfer A) in periods t; : : : ; T � 1 of the regulatory cycle, and �ut+1(�0; ct+1) =
ut+1(�

0+1; ct+1)�ut+1(�0; ct+1), �0 = �; ��1.19 Further note that (6) implies that investment
in period t of a regulatory cycle depends only on the access prices ct+1 in the remaining
periods t + 1; : : : ; T . It follows that the access prices in later periods a¤ect more periods
of investment than the access prices in earlier periods. (Thus, for example, the price c2 in

17Fairness corresponds to a setting in which the network �rm cannot wthdraw its assets without regulatory
approval.
18We rule out the possibility that the regulator can commit to a T -period menu of contracts

(c(fe�t�1gTt=2);A(fe�t�1gTt=2) that induces the �rm to self select based on its productivity e�t�1 (or equiva-
lently, to report its productivity truthfully every period.) Our focus here is on a relatively simple mechanism
is broadly similar to price cap regulation used in practice.
19For � = � and � = �, the recursion in (6) is modi�ed using the transition probabilities in (??) and

(??). Throughout the rest of this paper, it will be understood that analytical expressions pertain to interior
realizations � 2 (�; �) of the productivity process and that expressions for boundary realizations � = � and
� = � can be obtained by using the transition probabilities in (??) and (??).
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period 2 a¤ects only the investment in period 1, while the price cT in the last period of the
cycle a¤ects investments in periods 1; : : : ; T � 1.)
In period T of the regulatory cycle, the network �rm anticipates that at the end of that

period the regulator will observe the realization of its productivity e�0 for the �rst period of
a new cycle. The �rm expects that the regulator will set a tari¤ schedule c(e�0) and subsidy
A(e�0) for that upcoming cycle contingent on the realization of e�0. (In equilibrium, the �rm�s
expectation of the regulator�s strategy will be correct.) If the realization of e�T�1 was � (so
that the �rm�s marginal cost in in period T is �(�)), the possible realizations of e�0 are ��1; �;
or � + 1. The network �rm�s period-T Bellman equation is then

uT (�; cT ) = max
qT�0

(cT � �(�))D(cT )� F � I(qT ) + � [u1(�; c(�)) + A(�)]

+�

�
(1� �)qT f[u1(� + 1; c(� + 1)) + A(� + 1)]� [u1(�; c(�)) + A(�)]g
��(1� qT ) f[u1(�; c(�)) + A(�)])� [u1(� � 1; c(� � 1)) + A(� � 1)]g

�
;(7)

where u1(�; c1) + A is the �rm�s value at the beginning of period 1. Unlike the expressions
for ut(�) for t < T , here the network �rm anticipates that a change in its productivity level
will a¤ect its access prices.

2.6 Equilibrium

We study the Markov perfect equilibrium (MPE) of the game between the regulator and the
network �rm, which consists of objects fq�t (�; ct)gTt=1, fu�t (�; ctg

T
t=1, c

�(�); A�(�) satisfying the
following conditions:

� For any � and any schedule of access prices and subsidy, c and A, the network �rm�s
value functions u�t (�; ct); t = 1; : : : ; T�1 satisfy (6). The network �rm�s value function,
u�T (�; cT ) satis�es (7) given the regulator�s equilibrium strategy c

�(�); A�(�). The �rm�s
equilibrium investment strategies fq�t (�; ct)gTt=1 solve the corresponding optimization
problems in (6) and (7).

� For any �, the equilibrium access prices and subsidy c�(�); A�(�) maximizes expected
social welfare, subject to the network �rm�s participation constraint, given the �rm�s
equilibrium investment strategy.20

3 Characterization of the MPE

3.1 Preliminaries21

Because the expected social cost of subsidizing the network �rm is (1 + �)A, and expected
welfare strictly decreases in A, the participation constraint in the regulator�s optimization
problem will bind, i.e., u1(�; c�(�))+A�(�) = 0 for all � 2 [�; �]. From (7) we can then obtain

Proposition 1 If the �rm anticipates that the regulator will choose an optimal regulatory
policy c�(�); A�(�) in the next cycle, then for any policy c; A the �rm faces in the current

20We formally state the regulator�s optimization problem in the next subsection.
21All expression and results stated in this section, including Proposition 1, are derived or proven in the

Online Appendix.
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regulatory cycle, (a) the �rm does not invest in the last period T of the cycle, i.e., q�T (�) = 0;
(b) for any realization � of e�T�1,

uT (�; cT ) = (cT � �(�))D(cT )� F: (8)

Proposition 1, part (a) is a standard result. In the terminal period, as it looks ahead to
the next regulatory review, the �rm faces cost-plus regulation, squashing its incentive to
enhance its productivity. Part (b) of the result then follows directly: the present value of
the network �rm�s operating pro�t at the beginning of period T of the regulatory cycle is
simply its static operating pro�t in that period.
The recursion in (6) implies that for any realization � 2 (�; �) of the �rm�s productivitye�t�1 in any period of the regulatory cycle prior to the last, the �rm�s optimal investment is

given by22

q�t (�; ct+1) =

�

�
(1� �)�ut+1(�; ct+1)
+��ut+1(� � 1; ct+1)

�

 + �

�
(1� �)�ut+1(�; ct+1)
+��ut+1(� � 1; ct+1)

� 2 (0; 1); (9)

t = 1; : : : ; T � 1:

The present value of the network �rm�s operating pro�t at the beginning of the regulatory
cycle can be expressed as

u1(�; c) =
TX
t=1

�t�1

(
(ct � b�t(�; c2))D(ct)� F

�Ee�t�1
h
I(q�t (

e�t�1; ct+1))j�; c2i
)
; (10)

where b�t(�; c2) � Ee�t�1
h
�(e�t�1)je�0 = �; c2

i
is the expected marginal cost in period t of the

regulatory cycle when the network �rm�s productivity at the beginning of the regulatory
cycle is �, and the �rm follows its optimal investment program throughout the cycle.23

(Note that b�1(�; c2) = �(�).) The discounted present value of the regulator�s welfare within
a regulatory cycle is

PT
t=1 �

t�1 [	(ct)� 
] +  [u1(�; c) + A] � (1 + �)A. Given that the
participation constraint must bind, �A = u1(�; c), and with (10), we can then write the
regulator�s problem as

W (�) = max
c

TX
t=1

�t�1

"
	(ct)� 
 + (1 + �)

(
(ct � b�t(�; c2))D(ct)� F

�Ee�t�1
h
I(q�t (

e�t�1; ct+1))j�; c2i
)#

+�TEe�T
h
W (e�T )j�; c2i ; (11)

whereW (�) is the regulator�s value function. As in the static model, once we account for the
binding participation constraint, the regulator�s welfare depends on � but not the welfare
weight  . The regulator�s problem is akin to a Ramsey pricing problem, with each period
in the regulatory cycle akin to a distinct �good�with di¤erent marginal costs.

22For � = � and � = �, this expression is modi�ed in the natural way given the corner transition probabil-
ities in (??) and (??).
23The expectation b�t(�; c2) � Ee�t�1

h
�(e�t�1)j�; c2i is a function c2 because it depends on the probability

distribution for the sequence of random variables fe�tgTt=1 induced by the network �rm�s optimal investment
program

n
qt(e�t�1; ct+1)oT

t=1
, which, in turn, depends on the access prices ct+1 in future periods of the cycle.
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3.2 Characterization of the solution to the regulator�s problem

The characterization of the solution to the regulator�s problem depends on howEe�T
h
W (e�T )j�; c2i

depends on the access charges, and that in turn depends on how they a¤ect investment. We
begin with investment.

Proposition 2 For any t = 1; : : : ; T�1, realization � of e�t�1, and values of ct+1, @q�t (�;ct+1)@ct+s
<

0; s = 1; : : : ; T � t. That is, when the �rm�s investment in period t of regulatory cycle is an
interior solution, a lower price in any subsequent period of the cycle increases investment in
period t.

Proposition 2 formalizes the linkage between the access prices and investment within a
regulatory cycle. In a model of price cap regulation in which the regulated �rm makes a
one-time investment in cost reduction, Cabral and Riordan (1989) �nd that decreasing the
price cap increases the level of the one-time investment. As they explain, this is essentially
the �Arrow e¤ect�: a monopolist has a weaker incentive than a �rm operating in a per-
fectly competitive market to pursue a nondrastic process innovation because the monopolist
restricts output (Arrow 1962). In our model, this Arrow e¤ect operates intertemporally.
By lowering the price in period t + s, the regulator gives the �rm the prospect of a higher
quantity demanded in that period. This magni�es the bene�t to the network �rm of reduc-
ing marginal cost in that period, which in turn increases the incentive for investment in a
prior period t. This is because more investment in period t increases the likelihood that the
stochastic process of marginal cost will evolve toward lower costs from period t to period
t+ s.
To highlight how the regulator could potentially use the relationship between q�t (�; ct+1)

and ct+1 to increase expected welfare, we note that a �nite regulatory lag (i.e., 2 � T <1)
creates both a partial alignment of interests between the regulator�s welfare objective and
the �rm�s expected pro�t objective and a partial con�ict of interests. Regulatory lag ensures
that within a regulatory cycle, the �rm�s within-cycle cost reduction behavior is fully aligned
with the within-cycle portion of the regulator�s welfare objective, i.e., everything in (11)

except the continuation value �TEe�T
h
W (e�T )j�; c2i.24 In other words, if all that mattered to

the regulator was within-cycle discounted welfare, it could delegate investment to the �rm,
knowing that the program fq�t (e�t�1; ct+1)gT�1t=1 the �rm chooses would be what the regulator
itself would choose. This is analogous to a static model of �xed-price regulation under
complete information in which the regulator can delegate the choice of input mix to the �rm
knowing that the �rm�s cost function re�ects a socially e¢ cient choice of inputs conditional
on output.25

However, the regulator also cares about costs in future regulatory cycles, while the �rm,
by contrast, cares only about the current cycle because at the beginning of each cycle its
expected discounted pro�ts are reset to zero. (In e¤ect, the �rm perceives itself facing a cost-
plus contract between cycles.) The divergence between the regulator�s investment goals and

24Formally, the alignment of interests between the �rm and the regulator when it comes to reducing costs

in the current regulatory cycle is re�ected in absence of terms involving @b�s(�;c2)
@ct

and
@Ee�s�1 [qs(e�s�1)2j�;c2]

@ct
in (12). The envelope theorem applied to the �rm�s optimization problem embedded in u1(�; c) implies that
they disappear when we di¤erentiate the objective in (11) with respect to ct.
25Of course, the alignment of interests is not the case when it comes to access prices within a cycle.

The �rm prefers access prices that maximize u1(�; c), while a regulator prefers access prices that maximize
discounted social welfare.
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the �rm�s manifest itself in two distinct ways. First, and most obviously, from Proposition
1, the �rm does not invest in the last period of the cycle. Second, the �rm�s investments in
all other periods t = 1; : : : ; T �1 of a regulatory cycle are socially ine¢ cient because they do
not take into account the bene�t that productivity enhancement today has on marginal costs
beyond the current cycle. Lacking direct control over investment, the regulator cannot do
much about the �rst ine¢ ciency, but by Proposition 2 it can potentially do something about
the second ine¢ ciency: it can reduce access prices in the current cycle to �turbocharge�the
�rm�s investment incentives so that the �rm acts �as if� it cared about the impact of its
investment on marginal costs in future cycles.
The regulator�s bene�t from using the price to o¤set the �rm�s comparatively myopic

investment behavior is re�ected in the impact of c2 on the regulator�s continuation value
Ee�T [W (e�T )j�; c2]. We can establish that the regulator can increase its future expected dis-
counted welfare by lowering the prices in periods t = 2; : : : ; T of the current regulatory
cycle� and by Proposition 2� increasing the �rm�s investment� in periods t = 1; : : : ; T � 1
of the current cycle.

Proposition 3
@Ee�T [W (e�T )j�;c2]

@ct
< 0, t = 2; : : : ; T .

Proposition 3 then enables us to establish that in an important special case� interior
investment levels� the �rm has a tendency to underinvest in cost reduction in some periods
prior to the �nal period of a regulatory cycle.

Proposition 4 Suppose for access prices c the �rm�s optimal investments in all periods of
the regulatory cycle except the last are interior, i.e., q�t (e�t�1; ct+1) < 1 for t = 1; : : : ; T � 1
and all realizations of e�t�1. There exists at least one period t prior to the last period and
some realizations of productivity e�t�1 in that period in which the regulator would prefer that
the �rm invests more than it actually does. That is, in addition to underinvestment in the
last period of the regulatory cycle, there is also some underinvestment in earlier periods of
the cycle.

The tendency for underinvestment has a direct implication for how the regulator chooses
the access pricing schedule. The �rst-order conditions for the schedule of access charges
c�(�) that solves the problem in (11) can be written as26

c�t (�) =
b�t(�; c�2(�))� �

1 + �

D(c�t (�))

D0(c�t (�))
� P

�
(c�t (�))� (�(c�t (�)) + c�t (�))

1 + �
; (12)

where

b�t(�; c2) � b�t(�; c2)� �T�t+1
@Ee�T [W (e�T )j�;c2]

@ct

(1 + �)D0(ct)
< b�t(�; c2); (13)

is the social marginal cost of increasing output in period t. It is the period-t expected
marginal cost b�t(�; c2)minus a long-run �incentive adjustment�that equals the rate of change
of the regulator�s future discounted expected welfare with respect to a one-unit change in
output in period t of the regulatory cycle.

In period 1,
@Ee�T [W (e�T )j�;c2]

@c1
= 0, so b�1(�; c2) = b�1(�; c2) = �(�) and c�1(�) = c0(�(�)),

i.e., the price in the �rst period of the regulatory cycle is the �rst-best price. For periods
t = 2; : : : ; T , social marginal cost b�t(�; c2) is less than expected marginal cost b�t(�; c2), and
the regulator thus distorts the regulated prices for incentive purposes.
26Details can be found in the Online Appendix.
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Proposition 5 Under an optimal pricing schedule, in all but the �rst period of the regulatory
cycle, the regulator chooses a price schedule less than the �rst-best schedule corresponding to
the expected marginal costs, i.e., c�t (�) < c0(b�t(�; c�2(�)); t = 2; : : : ; T .
The regulator thus counters the �rm�s tendency to underinvest by committing to a more
aggressive schedule of access prices than it would have if, like the �rm, it made decisions
solely on the basis of the current regulatory horizon. This predisposes the regulator to chose
access prices in periods t = 2; : : : ; T that are lower than the price c�1(�) = c0(�(�)) in period
1. Indeed, when there is no depreciation� when expected marginal costs will stochastically
decline over time� some access prices later in the cycle will be strictly less than the price in
the initial period.

Proposition 6 If there is no depreciation, i.e., � = 0, the regulator commits to access
prices in later periods of the regulatory cycle that are less than the price at the beginning of
the regulatory cycle, i.e., c�t (�) < c�1(�) for all t = 2; : : : ; T .

Summing up, there are two related but distinct investment distortions that arise in our
model. First, anticipating a new regulatory review, the �rm chooses no investment in the
terminal period of the regulatory cycle. Second, the �rm has a tendency toward underin-
vestment in all periods of the regulatory cycle. Regulatory lag can reduce the �rst distortion
by decreasing the frequency of reviews. It can reduce the second distortion by making the
horizon over which the �rm makes its investment decisions more closely approximate the
regulator�s in�nite horizon. The access pricing schedule cannot a¤ect the �rst distortion,
but it can reduce the second, since lower prices tend to increase investment in all periods
but the last.
This discussion raises the question of whether access pricing and regulatory lag are com-

plements or substitutes. Speci�cally, does a longer lag make it less attractive or more at-
tractive to lower access prices to increase investment? If, as expected, a longer lag increases
investment for any given schedule of access prices, a longer lag can mechanically lead to lower
access prices. We thus want to remove this mechanical e¤ect to assess complementarity or
substitution. In our computational analysis below, we do so by examining the di¤erenceb�t(�; c2) � b�t(�; c2) between the expected marginal cost and social marginal cost. If this
di¤erence becomes smaller (in any period t) as the regulatory lag T increases, the access
prices and regulatory lag are substitutes. To the extent that the di¤erence becomes larger,
they are complements.
The access prices in our model are not, strictly speaking, price caps because our model

does not give the �rm �exibility to set a price less than the cap. Still, Proposition 6 hints at
a rationale for why a regulator might want a price cap to decline over time (an X-factor) that
goes beyond the traditional rationale grounded in both e¢ ciency and distributional consid-
erations. Decreases in price are an e¢ cient response to decreases in expected marginal costs.
Required decreases in price also provide a way for the regulator to force the �rm to share
some of its gains in productivity with consumers between regulatory reviews. Proposition
6 suggests a second e¢ ciency rationale for an X-factor: a decrease in the price cap at some
point beyond the �rst year of a regulatory cycle provides an additional incentive for invest-
ment beyond that provided by regulatory lag. This additional e¢ ciency rationale suggests
the use of X-factors that exceed the rate of decrease in marginal cost due to productivity
growth.27

27There are other reasons why X-factors might di¤er from expected rates of cost reduction. For example,
Brennan and Crew (2016) point out that when the regulated service faces declining demand, the X factor
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3.3 The trade-o¤ between static and dynamic e¢ ciency and the
deadweight loss under the regulatory equilibrium

As has long been understood, price cap regulation entails a trade-o¤between static e¢ ciency
and dynamic e¢ ciency. The regulatory lag in our model gives rise to this traditional trade-
o¤, but it involves an additional element due to the use of the regulated price as an incentive
device
To see why, we derive an expression for the deadweight loss, which requires characteri-

zation of the �rst-best solution. In the �rst-best solution, the regulator chooses prices and
investment levels contingent on realized productivity, subject to satisfying the individual ra-
tionality constraint for the �rm each period, NA+ (c� �(�))D(c)�F � I(q) � 0.28 (Under
this solution, it is as if there is a regulatory review each period, with the regulator, not the
�rm, deciding the investment level.) The �rst-best price is static �rst-best price c0(�(�))
tailored to realized productivity � observed in a period. First-best welfare can be written as

W 0(�) =
!0(�(�))

1� �
+

TX
t=1

�t�1

1� �T

n
Ee�t�1

h
!0(�(e�t�1))jq0(�)i� !0(�(�))

o

+
1

1� �T

8<: �T
h
Ee�T

h
W 0(e�T )jq0(�)i�W 0(�)

i
�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(q0(e�t�1))jq0(�)i

9=; : (14)

where q0(�) =
n
q0(e�t�1)j�oT

t=1
denotes the set of state-contingent �rst-best investment levels

over a T -period horizon when the initial productivity is �.
To derive an analogous expression for the regulator�s welfare W T (�) under a T -period

regulatory cycle, we can rewrite the regulator�s objective function in (11) as

W T (�) =
!0(�(�))

1� �
+

TX
t=1

�t�1

1� �T
�
!(c�t (�);b�t(�; c�2(�)))� !0(�(�))

	
+

1

1� �T

8<: �T
h
Ee�T

h
W T (e�T )jq�(�)i�W T (�)

i
�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(q�t (

e�t�1; c�t+1(�))jq�(�)i
9=; ; (15)

where q�(�) � fq�t (e�t�1; c�t+1(�))2j�; c�2(�)gTt=1 denotes the �rm�s state-contingent investment
levels over the T -period regulatory cycle when initial productivity is �.
The deadweight loss under the regulatory equilibrium is W 0(�) �W T (�). Subtracting

(15) from (14), the deadweight loss DWLT (�) can be written recursively:

DWLT (�) =W 0(�)�W T (�) = SET (�) +DET (�) + �TEe�T
h
DWL(e�T )jq0(�)i ; (16)

should be corrected to re�ect the rate of demand decline, the rate at which average cost increases as quantity
falls due to the demand decrease, and the rate at which the change in price itself further induces a change
in quantity.
28Alternatively, the individual rationality constraint could be that the �rm�s expected pro�t over the

in�nite horizon is non-negative. This would only a¤ect the pro�le of �xed access charges, not the variable
access charge.
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where

SET (�) =
TX
t=1

�t�1
n
Ee�t�1

h
!0(�(e�t�1))j�;q0(�)i� !(c�t (�); E

h
�(e�t�1))j�;q0(�)i)o :(17)

DET (�) =

26666666666664

PT
t=1 �

t�1

0@ E
h
�(e�t�1))j�;q�(�)i

�E
h
�(e�t�1))j�;q0(�)i

1AD(c�t (�))8<: �TEe�T
h
W T (e�T )jq0(�)i

�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(q0(e�t�1))jq0(�)i

9=;
�

8<: �TEe�T
h
W T (e�T )j�;q�(�)i

�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(q�t (

e�t�1; c�t+1(�))jq�(�)i
9=;

37777777777775
: (18)

The �rst component SET (�) is static ine¢ ciency within the T -period regulatory cycle.
The second component DET (�) is dynamic ine¢ ciency. It consists of two parts. The �rst
is the reduction in expected costs within the regulatory cycle when the investment schedule
is q0(�) rather than q�(�), holding output �xed at D(c�t (�)) in each period. The second
part holds the continuation value �xed at the level achieved in the regulatory equilibrium,
W T (�) and is the net increase in this expected continuation value (after deducting expected
investment costs) when the investment schedule is q0(�) rather than q�(�). This portion
of the deadweight loss arises because the equilibrium investment pro�le induced by the
regulatory equilibrium will not necessarily correspond to the �rst-best level. The recursion
in (16) implies that DWLT (�) is a (complicated) weighted sum of the SET (�) and DET (�)
for all �.29

Static ine¢ ciency SET (�) is unambiguously positive for two reasons, represented by the
inequalities in the following expression.

Ee�t�1
h
!0(�(e�t�1))jq0(�)i > Ee�t�1

h
!(c0(E

h
�(e�t�1))j�;q0(�)i); �(e�t�1))jq0(�)i

= !(c0(E
h
�(e�t�1))j�;q0(�)i ; E h�(e�t�1))j�;q0(�)i)

= !0(E
h
�(e�t�1))j�;q0(�)i)

� !(c�t (�); E
h
�(e�t�1))j�;q0(�)i); t = 2; : : : ; T: (19)

The �rst inequality re�ects the traditional source of static ine¢ ciency under price cap reg-
ulation: there is a welfare loss because the access prices are not tailored to actual marginal
cost.30 The second inequality arises because the optimal price is not necessarily the static
optimal price when marginal cost in period t is E

h
�(e�t�1))j�;q0(�)i. This is true for two

reasons. First, the expected marginal cost in period t under the regulator�s optimal pricing
schedule is b�t(�; c�2(�)) = E

h
�(e�t�1))j�;q�(�)i 6= E

h
�(e�t�1))j�;q0(�)i because investment is

29The weights depend on � and q0(�).
30Recall that, !0(�) = maxc !(c; �), so !0(�(e�t�1)) > !(c0(E

h
�(e�t�1))j�;q0(�)i); �(e�t�1)) since

c0(E
h
�(e�t�1))j�;q0(�)i) is a feasible but not optimal access price when �(e�t�1) 6= E

h
�(e�t�1))j�;q0(�)i.

Taking expectations with respect to the probability distribution q0(�) yields the �rst inequality.
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not �rst best. Secondly, even if b�t(�; c�2(�)) = E
h
�(e�t�1))j�;q0(�)i, in periods t = 2; : : : ; T ,

c�t (�) < c0(b�t(�; c�2(�)) because the price is based on social marginal cost b�t(�; c�2(�), not
expected marginal cost b�t(�; c�2(�)).
As noted above, the regulator creates investment incentives in two ways: increasing

regulatory lag and lowering access prices. Both incentive devices reduce static e¢ ciency. If
these devices are substitutes, the regulator would rely less on distortions in the price as T
increases and would rely on regulatory lag to increase investment incentives. If so, it seems
possible that increases in T would not necessarily increase the static ine¢ ciency component of
the deadweight loss. If, by contrast, these two incentive devices are complements, distortions
in the price would increase as T increases, and SET (�) would presumably increase in T .
From (19) a lower bound on SET (�) will be

TX
t=1

�t�1
n
Ee�t�1

h
!0(�(e�t�1))j�;q0(�)i� !0(E

h
�(e�t�1))j�;q0(�)i)o :

For the speci�cation in Table 1 below this has a simple form:

N

2

(N � 1)b+ 1� b

(N � 1)b+ 2(1� b)

TX
t=1

�t�1V are�t�1
h
(�(e�t�1))j�;q0(�)i ;

where V are�t�1(�) denotes the variance with respect to e�t�1. The incremental change in
static ine¢ ciency from increasing regulatory lag from T � 1 to T is thus proportional to
�T�1V are�T�1

h
(�(e�T�1))j�;q0(�)i. If �(�) is convex and most productivity gains have been

exhausted, then we would expect V are�T�1
h
(�(e�T�1))j�;q0(�)i to be small. This suggests that

there are circumstances under which increasing regulatory lag might entail only a modest
loss of static e¢ ciency.
To further study the determinants of the deadweight loss, we compute the deadweight

loss and the component of the decomposition for a wide range of parameterizations. We
report those results below.

3.4 Is some regulatory lag better than no lag?

The trade-o¤ between static and dynamic e¢ ciency raises the possibility that no regulatory
lag (T = 1) could be better than some lag (T > 1). However, for the special case in which
there is no depreciation, we can show that some commitment always bene�ts the regulator.

Proposition 7 Suppose there is no depreciation of productivity, i.e., � = 0, W T (�) �
W 1(�) > 0 for all � and T > 1, i.e., some regulatory lag (T > 1) always results in higher
expected social welfare than continuous regulatory reviews (T = 1).

The key insight used to prove this result is that when it comes to investment in the �rst
T � 1 periods of a T -period cycle, the regulator�s interests and the �rm�s interests are not
�too far�out of alignment. As discussed above, the �rm�s optimal investments when faced
with a schedule of access tari¤s maximize discounted social welfare within the regulatory
cycle. Though myopic (because the �rm does not consider the bene�ts of its investments
beyond the current cycle), the �rm�s behavior is still preferable to there being no investment
at all, as is the case when T = 1.
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It does not follow that a longer regulatory lag is always better for the regulator. If the
marginal cost of investment is su¢ ciently high and there is positive depreciation, a longer
lag can make the regulator worse o¤.

Proposition 8 If � > 0 and the slope of the marginal investment cost function becomes
arbitrarily large, i.e., 
 !1, then W T (�)�W 1(�) < 0, i.e., a longer regulatory lag (T > 1)
results in lower social welfare than continuous regulatory reviews (T = 1).

Proposition 8 implies there is nothing inherent in the structure of regulation in our model
that makes a longer regulatory lag better. But Proposition 8 is merely a possibility result.
The question we ask in the next section is whether there is an interesting trade-o¤ between
shorter and longer lags in plausible economic environments. We explore that question next.

4 Computational Analysis

To further explore properties of optimal regulatory pricing schedule and the trade-o¤s it
entails, we compute equilibria of the model.

4.1 Speci�cation and parameter values

Table 1 presents expressions for the economic objects underlying our computations. The
parameter a scales the magnitude of downstream demand, while b is the degree of horizontal
di¤erentiation among downstream �rms, with b = 0, corresponding to the case in which the
downstream �rms are independent, and as b ! 1, the services are seen by end consumers
as perfect substitutes. Marginal and �xed costs are assumed to be the same for all oper-
ating �rms and equal to � and f , respectively. With this speci�cation, the downstream
price-setting game has a symmetric Bertrand-Nash equilibrium. In the relationship between
productivity and marginal cost, �1 is the annual percentage decrease if productivity increased
by one unit each year.
Table 2 shows the parameter grid G we use in our computations. Occasionally, we focus

on a baseline parameterization in which parameters take on the bold-faced value in the table.
We take a period to be a year, so the parameter values are chosen relative to that yardstick.
For example, the values of �1 imply that the maximum rate of potential cost decrease of the
network �rm ranges from 0:5 percent per year to 15 percent per year.
The grid G consists of 31,250,000 distinct parameter combinations. The parameter values

are not intended to represent any particular setting, but they encompass, we believe, plausible
economic environments. For example, the values of a imply that the price elasticity of market
demand for access at the static welfare optimum ranges between about �0:49 to �2:65.
Upper and lower bounds for some parameters, such as b and �, are implied by theory. For
most other parameters, we selected values that were empirically plausible. An exception was

. Because it is di¢ cult to identify a plausible value of 
, we let it vary within a wide range.
The values of the parameters in the last �ves rows of Table 2 �, f , F , �, and � are �xed
throughout, with the value of � based on empirical estimates of cost conditions for freight
railroads, as discussed in Besanko and Cui (2016).
All computations are done in MATLAB 9.2 (R2017a) using the University of Florida�s

supercomputer cluster. In each parameterization, we use Gauss-Jacobi iterative method to
compute the MPE prices, investments, and welfare. Our calculations achieved convergence
for 86.83 percent of the parameterizations in G. The results of our computations over G
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reported below exclude all parameterizations for which we had non-convergence for some T .
For example, if we have convergence for a particular parameterization for T = 1; : : : ; 7 but
not T = 8, we exclude this case.

4.2 Computational results

In what follows, we characterize regularities established by our numerical calculations as
�Results.�Results are, of course, distinguished from the propositions above established by
formal arguments.
Figure 2 presents our �ndings for state � = 15, a state in which the network �rm has

achieved some productivity gains but has not fully exhausted its potential for even more.31

We present analogous �gures for states � = 5; 10; 20; 25 in the Online Appendix. The results
displayed in those �gures are broadly similar with those presented here.
We begin by characterizing equilibrium investment for a �xed productivity state.

Result 1 For 100% of the parameterizations in G, a longer regulatory lag induces more
investment in equilibrium at any period within the regulatory cycle prior to the �nal period,
i.e., qT+1�t (�) > qT�t (�); t = 1; : : : ; T � 1; T = 1; : : : 7, for productivity state � = 15:

Result 2 For 100% of the parameterizations in G, for any regulatory lag, investment de-
creases monotonically throughout the regulatory cycle, i.e., qT�t�1(�) > qT�t (�); t = 2; : : : ; T; T =
1; : : : 8, for productivity state � = 15:

These results, illustrated in the two upper panels on the right hand-side of Figure 2,
highlight the power of regulatory lag in motivating investment. Result 1 shows that for
swath of parameter space for which we computed equilibria, a longer lag always results in
more investment than a shorter lag at a given point in a regulatory cycle. Result 2 shows
that as the �rm�s decision horizon diminishes before its next review, investment goes down
(eventually reaching zero by the terminal period in a cycle, as established in Proposition 1).
The next result summarizes our �ndings on the impact of regulatory lag on welfare

illustrated by the bottom panel the right-hand side of Figure 2.

Result 3 For more than 97% of the parameterizations in G, the regulator�s long-run wel-
fare was higher the longer the regulatory lag, i.e., W T+1(�) > W T (�); T = 1: : : : ; 7, for
productivity state � = 15::32

The percentage of parameterizations in which the regulator prefers a longer lag to a
shorter one ranges from 0.9764 when T = 7 (so W 8(�) > W 7(�) in 97.64 percent of the
parameterizations in G) to 0.9937 when T = 2. These proportions are noteworthy for two
related reasons. They show, consistent with Proposition 8, that within our parameter grid
the regulator might not always prefer some commitment to no commitment. They also
indicate that the set of parameterizations in which the regulator would prefer not to commit
is extremely narrow. The small sliver of cases in which the regulator prefers a shorter lag

31In Figure 2, the superscript T denotes the dependence of equilibrium objects on the length of regulatory
lag. Further, the term qT�t (�) denotes equilibrium investment in period t of a T -period cycle, i.e., qT�t (�) =
q�t (�; c

�
t+1(�)) for t = 1; : : : ; T .

32It should be noted that in slightly over one percent of parameterizations in Figure 2, WT (15) < 0,
indicating that the regulator would prefer, if it could, to have the �rst salvage its assets rather than produce.
We tried to avoid this possibility through our choices of a, f , and F . However, if we exclude the cases in
whcih WT (15) < 0, the percentages and patterns are virtually identical to those in Figure 2.
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tend to occur for extreme parameterizations, primarily when the slope 
 of the marginal
investment cost function is so large, or the market demand parameter a is so small, that
there is practically no investment. This can be seen in Figure 3 which shows the percentage
of parameterizations for which W T+1(15) > W T (15) with a single parameter �xed at a
particular value. (Thus, the lowest line in the top left-hand panel of Figure 3 is the percentage
of equilibria for which W T+1(15) > W T (15) with 
 �xed at 5,000 and all other parameters
varying in G.). The results on W T+1(15) > W T (15) in Figures 2 and 3 further reinforce the
theme of how potent regulatory lag can be despite its adverse impact on static e¢ ciency.
Even though a longer lag generally increases the regulator�s long-run welfare, the returns

to a longer lag generally diminish. We illustrate this in the upper-left panel of Figure 4,
which plots W (�) for the baseline parameterization. We see in this �gure clear diminishing
marginal returns to increasing regulatory lag. For example, at a low level of productivity such
as � = 5, where opportunities for future cost reduction are abundant, there are meaningful
gains in expected welfare in moving from no lag to a two-year lag (about 9.4 percent) or
from a two-year lag to a three-year lag (about 6.2 percent). However, these gains are much
smaller in moving beyond a six-year lag (e.g., the gain from T = 6 to T = 7 is 1.7 percent).
At an intermediate level of productivity such as � = 15, the gains from increasing regulatory
lag are more modest, about 3 percent when we move from T = 1 to T = 2, and 2.3 percent
from T = 2 to T = 3. Beyond T = 6, the gain from increasing regulatory lag are less than
one percent per additional year.
Returning to Figure 2 and moving from the bottom to the top of the left-hand panels,

we have several results on the equilibrium access prices. The �rst pertains to the percentage

decrease
cT�t�1(�)�cT�t (�)

jcT�t�1�j in prices.

Result 4 For all T = 1; : : : ; 8, the percentage decrease cT�t�1(�)�cT�t (�)

jcT�t�1�j in price is greater than

the percentage decrease b�t�1(�;c�2(�))�b�t(�;c�2(�))
jb�t�1(�;c�2(�))j in expected marginal cost in more than 60% of

parameterizations in productivity state � = 15.33 Beyond the second period of a regulatory
cycle (i.e., t � 3) the percentage decrease in the price exceeds the percentage change decrease
in expected marginal cost in more than 80% of parameterizations for all T = 1; : : : ; 8.

The percentage decreases in prices,
�
cT�t�1(�)�cT�t (�)

jcT�t�1�j

�T
t=2

, along the price schedule can be

thought of as analogous to a commitment to a set of time-varying X-factors. In practice,
the X-factors in price cap regulation have two rationales� they more closely match prices
to marginal costs that fall over time due to improved productivity (an e¢ ciency rationale),
and they share the bene�ts of productivity improvements with consumers (a distributional
rationale). Our analysis has highlighted that the price schedule to which the regulator
commits has an additional e¢ ciency rationale: motivating the �rm to internalize the bene�ts
of investment in the current cycle for cost reduction beyond the current cycle. Result 4

33When the access price increases from one period to the next (as is possible when depreciation is suf-

�ciently positive),
cTt�1�c

T
t

jcTt�1j
will be negative. A tendency for

cTt�1�c
T
t

jcTt�1j
>

�Tt�1��
T
t

j�Tt�1j
indicates that percentage

increases in access prices tend to be less than percentage increases in expected marginal cost. Our model
would thus suggest that when marginal costs are expected to rise, price escalation should be less than
expected cost escalation.

the bottom panel on the left-hand side of tells us that this increase tends to be less (i.e., more negative)
than the increase

21



suggests that this additional role would often call for X-factors that are larger than those
based solely on traditional e¢ ciency and distributional considerations. The incentive role of
access prices is particularly large for prices later in the cycle. The price in any period a¤ects
investment in all prior periods of a regulatory cycle. Later-period prices thus play an outside
role in shaping investment incentives.

Result 4 speaks only to the direction of the inequality between
cT�t�1(�)�cT�t (�)

jcT�t�1�j and b�t�1(�;c�2(�))�b�t(�;c�2(�))
jb�t�1(�;c�2(�))j ,

but we �nd that the di¤erence in magnitudes can be quite large. For example, when T = 2,
for the baseline parameterization the percentage decrease in expected marginal cost between
periods 1 and 2 when � = 9 is very small, about 0.02%. However, the percentage decrease
in prices between periods 1 and 2 is 13.8%.

We also investigated how the incentive adjustment term b�Tt (�; cT�2 (�)) � b�Tt (�; cT�2 (�) is
a¤ected by regulatory lag.

Result 5 For any t, the incentive adjustment term b�Tt (�; cT�2 (�)) � b�Tt (�; cT�2 (�)) decreases
as T increases in more than 85% of parameterizations in productivity state � = 15.

This result indicates that there is a strong tendency for the distortion to access pricing
to decrease as regulatory lag increases. Regulatory lag and the price schedule are thus much
more likely to be substitute incentive mechanisms than complementary ones.
The remaining panel on the left-hand side of Figure 2 pertains to the access prices

themselves.

Result 6 For any given period t of the regulatory cycle, the price cT�t (�) increases in the
length T of the regulatory cycle in less than 25 percent of parameterizations when the pro-
ductivity � = 15:

This result re�ects the bene�cial impact regulatory lag has on investment and thus the
social marginal cost on which access prices are based.

4.3 Deadweight loss decomposition

The decomposition of the deadweight loss in (16) illustrates the source of the welfare gains
from a higher T . Panel 1 in Figure 5 shows the deadweight loss DWLT (�) in the baseline
parameterization for regulatory lags T = 1; : : : ; 10, and panel 2 shows the corresponding
continuation value �TEe�T

h
DWL(e�T )j�;q0(�)i. For this particular parameterization, the

deadweight loss goes down as T increases.
As noted above, the deadweight loss for any � will be a weighted sum of the SET (�) and

DET (�) for all value of �. Panel 3 in Figure 5 shows the static ine¢ ciency SET (�) for regula-
tory cycles ranging from T = 1 to T = 10. While SET (�) increases in T when productivity is
su¢ ciently low, it does not necessarily increase in T at higher levels of productivity. This is
consistent with regulatory lag and access pricing being substitutes rather than complements
when it comes to motivating investment.
Panel 4 in Figure 5 shows the dynamic ine¢ ciency component of deadweight lossDET (�).

For T � 4, the dynamic ine¢ ciency decreases as T increases. However, monotonicity does
not hold for T = 1; 2; 3.
The key insight here is that while longer regulatory lags signi�cantly reduce the dead-

weight loss from dynamic e¢ ciency that can arise with a shorter lag, they entail just a
modest sacri�ce of static ine¢ ciency. This is because with a shorter lag, the regulator relies
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heavily on reduction in the price to increase investment incentives, which, as we have seen,
reduces static e¢ ciency. With a longer lag, the regulator does not need to lean into these
distortions quite as much. The longer lag by itself helps boost investment.

4.4 How important is it for the regulator to be foresighted?

In our model, the regulator is foresighted, taking into account how the price schedule in the
current regulatory cycle a¤ects decision making by itself and the �rm in all future cycles.

5 Endogenizing the length of the regulatory cycle

So far we have assumed that the regulator could commit ex ante to the length T of the
regulatory cycle. In this section, following ARV, we relax this assumption and allow the
regulator to determine T at the beginning of a new cycle. The lag T thus becomes an
equilibrium choice along with c and A.
The regulator�s problem is

W (�) = max
c1;:::cT ;T2T

TX
t=1

�t�1 [	(ct)� 
]

+ (1 + �)u1(�; c1; : : : cT ) + �TEe�T
h
W (e�T )j�; c2; : : : cTi ; (20)

where T is the set of possible cycle lengths. The solution to this problem involves a regulatory
cycle length T (�) that will depend on the �rm�s productivity coming out of the previous
regulatory cycle.

5.1 Is a �xed cycle length a Markov perfect equilibrium?

This framework allows for the possibility that the regulator chooses a cycle of a �xed length
irrespective of the �rm�s productivity, i.e., T (�) = T 0 for all � for some particular value of
T , namely T 0. Because such an outcome would replicate the full-commitment case studied
in the previous section, we refer to this as the full-commitment equilibrium.
A necessary condition for a full-commitment equilibrium of length T is that the regulator

has no incentive for a �one-shot deviation� to another cycle length bT and followed by a
return to cycle length T when the deviation is over. That is, if W T (�) is the value function
corresponding to the full-commitment solution with a regulatory cycle of length T , then for
any other cycle length bT .

W T (�) � W T;bT (�) � max
c1;:::c bT

bTX
t=1

�t�1 [�(ct)� 
]

+ (1 + �)u1(�; c1; : : : cbT ) + �
bTEe� bT

h
W T (e� bT )j�; c2; : : : cbTi ; (21)

Figure 6 shows computations of W T (�) and W T;bT (�) for the baseline parameterization
and T = 1; : : : ; 10. We compute W T;bT (�) � W T (�) (shown as W bTT � WT in the �gure
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6).34 For T < 10, the regulator has an incentive to deviate to a longer cycle for all �, i.e.,
W T;10(�)�W T (�) > 0 for all �.35

Figure 6 reveals two regularities. First, the gain from a one-shot deviation becomes
smaller as the �rm�s productivity increases. A commitment to a regulatory lag is less vul-
nerable to opportunistic deviation by the regulator when potential gains from enhanced
dynamic e¢ ciency are smallest. Second, the gain from a one-shot deviation is greater for
shorter regulatory cycles than for longer ones. For example, when T = 2 and � = 10, de-
viating to T = 10 increases the regulator�s discounted welfare from 494.4577 to 539.0846
(about 9 percent). When T = 8 and � = 10, deviating to T = 10 increases the regulator�s
discounted welfare from 560.1224 to 563.9871 (about 0.69 percent). Thus, shorter regulatory
cycles are more vulnerable to opportunistic deviation by the regulator. For regulatory lags
used in practice such as T = 4 or T = 5, the gains from one-shot deviations in our baseline
parameterization are relatively small for all �.

5.2 Markov perfect equilibrium regulatory cycle

The analysis of one-shot deviations rule out the possibility that the equilibrium regulatory
lag coincides with the full-commitment equilibrium for T < 10. However, it does not tell us
what the Markov equilibrium policy T (�) is.
To determine the equilibrium, we solve the regulator�s optimization in (20) assuming reg-

ulator has a choice among ten di¤erent regulatory lags. We use an iterative algorithm to solve
this problem computationally. At the beginning of an iteration, we conjecture a single value
function cW (�). Along with that we conjecture sets of investment and access pricing policy
functions for each T . We use the common value function and the T -speci�c conjectures of the
investment and pricing policy functions to compute an expectation Ee�T

hcW (e�T )j�; c2; : : : cTi
for each candidate T 2 f1; : : : ; Tg. This, in turn, enables us to compute equilibrium ac-
cess prices, investments, and �rm discounted pro�ts for each possible T , which then be-
come our conjectures for the next iteration. This step also implies value function candi-
dates, fW 1(�);W 2(�); :::;W 10(�)g. Our conjectured value function for the next iteration is
maxT2f1;:::;TgfW T (�)g, which then becomes the basis a revised expectation on the right-hand
side of (20). If this process converges, the equilibrium lag T �(�) = argmaxT2f1;:::;TgfW T (�)g,
and the regulator�s equilibrium welfareW (�) =W T �(�). By construction, T �(�) andW T �(�)
satisfy (20) and constitute a Markov perfect equilibrium.
When we compute the equilibrium for the baseline parameterization, we �nd T � (�) = 10.

Figure 7 shows the regulator�s value functions for each of the candidate regulatory lag. The
�gure illustrates that if the regulator �believes� that T � (�) = 10, it will in fact have an
incentive to select T = 10.
It is well understood by economists and policy scholars that regulatory lag is a valuable

incentive tool when it comes to motivating regulatory �rms to make e¢ cient investment
decisions. We see the analysis in this section as showing just how powerful regulatory lag
can be. Recall that, in principle, the regulator could motivate the �rm to invest with a short
regulatory lag and access prices that sharply decline beyond the �rst period, and in doing
so, it preserves some degree of static e¢ ciency. The fact that the regulator, even when it
cannot commit to a lag ex ante, will nevertheless choose the longest feasible regulatory lag
shows that adjusting the access pricing schedule (or, equivalently, adjusting the X-factors)

34Note that W10#�W# refers to WT;bT (�)�WT (�) when T = # and bT = 10.
35Note that for T = 10, WT;bT (�)�WT (�) < 0 for all � and bT < 10.
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goes only so far in promoting dynamic e¢ ciency. Ultimately, the shorter regulatory lag has
a serious bug: in the last period of every cycle, �rm will behave opportunistically and not
invest in anticipation of the next review. With a shorter lag, this opportunistic behavior
recurs more frequently, which takes its toll on expected social welfare.

6 Summary and conclusions

This paper studied a stochastic dynamic game of regulatory price setting. In our model, a
regulated �rm makes investments each period that stochastically improves its productivity
and reduces its marginal costs. The in�nite horizon over which the �rm and the regulator
interact is divided into regulatory cycles that last for T -periods. At the beginning of a
regulatory cycle, the regulator� whose objective is to maximize expected welfare, subject
to satisfying the network �rm�s participation constraint� commits to a T -period schedule
of access charges in each period of the cycle. It cannot, however, commit to subsequent
schedules for future regulatory cycles.
It is not a general property of our model that a longer regulatory lag is always better for

a welfare-maximizing regulator. Our computational analysis illustrates that a longer lag can
decrease expected welfare. For parameterizations that predispose investment to be low (e.g.,
when the marginal investment cost function is steeply sloped or when market size is small),
the loss in static e¢ ciency from a longer lag can exceed the gains in dynamic e¢ ciency from
a longer lag. This occurs not only because of the traditional source of static ine¢ ciency
with regulatory lag� the regulator not tailoring prices to within-cycle changes in the �rm�s
productivity� but also because the regulator uses prices as incentive device to induce more
investment in productivity enhancement.
Still, we �nd that a longer lag is better for expected welfare than a shorter lag for the

overwhelming number of parameterizations for which we computed equilibria. This comes,
though, with an important caveat: we �nd strong diminishing returns to longer lags. Most of
the additional bene�t of a longer cycle is captured with regulatory lags of lengths no greater
than the longest lags used in practice, �ve to six years.
A key force in our model is that reducing the regulated price in any given period of

the regulatory cycle beyond the �rst period increases the marginal product of investment in
any prior period through an intertemporal Arrow e¤ect. The prospect of a higher quantity
demanded in period t + s of a regulatory cycle magni�es the bene�ts of reducing marginal
cost in that period, which in turn increases the incentive for investment in a prior period
t because such investment increases the likelihood that the stochastic process of marginal
cost will evolve toward lower costs from period t to period t + s. But the regulator does
not use the price to motivate more investment to reduce expected marginal costs within the
regulatory cycle. This is because within a cycle the regulator and the �rm�s incentives for
cost reduction are aligned. Instead, the regulator uses the price schedule to o¤set the �rm�s
tendency to ignore the impact of current-cycle investment on marginal costs in future cycles.
With the �rm�s discounted expected pro�t reset to satisfy its participation constraint at the
beginning of each period, the �rm�s perceives no bene�ts in future cycles from enhancing its
productivity within the current cycle. The regulator, however, does perceive a future bene�t
from productivity increases within the current cycle. By distorting the price schedule down-
ward, the regulator �juices�the �rm�s investment incentives within the current cycle so that
it acts �as if�it did care about the impact of those investments on future productivity. This
underscores an important policy implication of this paper: in setting prices or caps on prices,
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regulators should think of their impact beyond the current regulatory cycle. Our analysis
also suggests the use of X-factors in price cap regulation that are greater than expected
decreases in costs based on anticipated increases in productivity. This latter conclusion is
reinforced by our computational analysis �nding that the percentage decrease in access prices
within a regulatory cycle often exceeds the percentage decrease in expected marginal costs.
In general, lower access charges and regulatory lag could either be substitutes or com-

plements. Our computational analysis illustrates that they are substitutes far more often
than complements, i.e., a longer lag leads to less distortion in the price relative to the case
in which the regulator does not use the price as an incentive device. This makes sense. With
a longer lag, the �rm�s investment horizon expands, and its investment incentives are more
aligned with the regulator�s. The regulator�s need to distort prices downward is accordingly
attenuated.
There are number of extensions of the model presented here. For example, we have

assumed that the network �rm�s outside option is invariant to its productivity level. While
this seems natural in our context, where the �rm�s assets are highly specialized and have
very limited redeployment value, it would be straightforward to extend our model so that
the outside option depends on productivity. This would mitigate, somewhat, the �rm�s
drop-o¤ in investment in the last period of the regulatory cycle because the �rm would
now have a reason to care about the impact of its investment in that period on its future
pro�tability. This would, one might conjecture, make it less necessary for the regulator to
distort the access charges for incentive purposes. Another extension would be to introduce
the possibility of large changes in economic circumstances that could exacerbate the static
ine¢ ciency from commitment to a price schedule. Such a possibility reduces the power of
regulatory lag as an incentive device. Given that we �nd strong diminishing returns to
regulatory lag when there is no possibility of drastic changes in economic fundamentals, we
conjecture that the possibility of potentially large and hard-to-predict changes would result
in optimal regulatory lags that are consistent with those we observe in practice, three to �ve
years. Finally, investment in cost reduction is not the only nonveri�able investment a �rm
could make. A network infrastructure �rm could also invest in network quality, as in Besanko
and Cui (2016). If network quality reduces the marginal costs of operating �rms or directly
increases the demand of end consumers for the downstream service, then more investment
in quality by the network �rm would increase the demand for access to the bottleneck
infrastructure. Given this, the marginal bene�t of the network �rm�s investment in quality
would depend partly on the margin between the network �rm�s price and its marginal
cost. Unlike the cost-reducing investment featured here, a higher price might stimulate
more investment in quality. Distortions to access pricing by the regulator to stimulate both
cost-reducing investment and investment in network quality may o¤set each other. As a
consequence, the optimal price schedule may result in changes in price during the regulatory
cycle that more closely track changes in expected marginal costs than is the case in the
model in this paper.

7 Appendix

Proof of Proposition 2:
Preliminaries: Let

z�t (�; ct+1) �
q�t (�; ct+1)

1� q�t (�; ct+1)
=
�



[(1� �)�ut+1(�; ct+1) + ��ut+1(� � 1; ct+1)] (22)
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Because the function z(q) = q
1�q is strictly increasing in q, to prove that

@q�t (�;ct+1)
@ct+s

< 0; s =

1; : : : ; T � t, it su¢ ces to prove that @z
�
t (�;ct+1)

@ct+s
< 0; s = 1; : : : ; T � t

Part 1: Derivation of @z�t (�;ct+1)
@ct+s

:

We begin by establishing that for any t = 1; : : : ; T � 1, realization � of e�t�1, and values
of ct+1,

@z�t (�; ct+1)

@ct+s
=

�s




8<: (1� �)�Ee�t+s�2
h
�(e�t+s�2)j�; ct+2i

+��Ee�t+s�2
h
�(e�t+s�2)j� � 1; ct+2i

9=;D0(ct+s) � 0

s = 1; : : : ; T � t; (23)

where

�Ee�t+s�2
h
�(e�t+s�2)j�; ct+2i � Ee�t+s�2

h
�(e�t+s�2)je�t�1 = �; ct+2

i
�Ee�t+s�2

h
�(e�t+s�2)je�t�1 = � + 1; ct+2

i
:

First consider s = 1. Using (22 we have

@z�t (�; ct+1)

@ct+1
=
�




�
(1� �)

@�ut+1(�; ct+1)

@ct+1
+ ��

@�ut+1(� � 1; ct+1)
@ct+1

�
:

To evaluate this term, we begin with the version of (6) for period t+ 1:

ut+1(�; ct+1) = max
qt+12[0;1]

(ct+1 � �(�))D(ct+1)� F � I(qt+1) + �ut+2(�; ct+2)

+� f(1� �)qt+1�ut+2(�; ct+2)� �(1� qt+1)�ut+1(� � 1; ct+2)g (24)

Applying the envelope theorem to (24)

@ut+1(�; ct+1)

@ct+1
= (ct+1 � �(�))D0(ct+1) +D(ct+1)

Thus

@�ut+1(�; ct+1)

@ct+1
=
@ut+1(� + 1; ct+1)

@ct+1
� @ut+1(�; ct+1)

@ct+1
= ��(�)D0(ct+1) < 0;

Similarly, @�ut+1(��1;ct+1)
@ct+1

= ��(� � 1)D0(ct+1) < 0. Thus,

@z�t (�; ct+1)

@ct+1
=
�



f(1� �)��(�) + ���(� � 1)gD0(ct+1) < 0: (25)

Now, consider s = 2, i.e., @z
�
t (�;ct+1)

@ct+2
.36 Using (22),

@z�t (�; ct+1)

@ct+2
=
�




�
(1� �)

@�ut+1(�; ct+1)

@ct+2
+ �

@�ut+1(� � 1; ct+1)
@ct+2

�
D0(ct+2) (26)

36This is provided t+ 2 � T , or t � T � 2.
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To evaluate this, we need to determine the expressions for @�ut+1(�;ct+1)
@ct+2

and @�ut+1(��1;ct+1)
@ct+2

.
Applying the envelope theorem to (24) and rearranging terms in the resulting expression
gives us

@ut+1(�; ct+1)

@ct+2
= �

8><>:
(1� �)q�t+1

@ut+2(�+1;ct+2)
@ct+2

+�
1� (1� �)q�t+1 � �(1� q�t+1)

� @ut+2(�;ct+2)
@ct+2

+�(1� q�t+1)
@ut+2(��1;ct+2)

@ct+2

9>=>; ;

where it is understood that q�t+1 = q�t+1(�; ct+2). Using the logic of our analysis above,
@ut+2(�;ct+2)

@ct+2
= (ct+2 � �(�))D0(ct+2) +D(ct+2), so

@ut+1(�; ct+1)

@ct+2
= �

8<:
(1� �)q�t+1 [(ct+2 � �(� + 1))D0(ct+2) +D(ct+2)] +�

1� (1� �)q�t+1 � �(1� q�t+1)
�
[(ct+2 � �(�))D0(ct+2) +D(ct+2)]

+�(1� q�t+1) [(ct+2 � �(� � 1))D0(ct+2) +D(ct+2)]

9=;
= �

h
(ct+2 � Ee�t

h
�(e�t)je�t�1 = �; ct+2

i
D0(ct+2) +D(ct+2)

i
:

where,

Ee�t
h
�(e�t)je�t�1 = �; ct+2

i
=

8<:
(1� �)q�t+1�(� + 1)

+
�
1� (1� �)q�t+1 � �(1� q�t+1)

�
�(�)

+�(1� q�t+1)�(� � 1)

9=; :

Similarly,

@ut+1(� + 1; ct+1)

@ct+2
= �

h
(ct+2 � Ee�t

h
�(e�t)je�t�1 = � + 1; ct+2

i
D0(ct+2) +D(ct+2)

i
;

@ut+1(� � 1; ct+1)
@ct+2

= �
h
(ct+2 � Ee�t

h
�(e�t)je�t�1 = � � 1; ct+2

i
D0(ct+2) +D(ct+2)

i
Thus

@�ut+1(�; ct+1)

@ct+2
=

@ut+1(� + 1; ct+1)

@ct+2
� @ut+1(�; ct+1)

@ct+2

= ��Ee�t
h
�(e�t)j�; ct+2iD0(ct+2);

where

�Ee�t
h
�(e�t)j�; ct+2i = Ee�t

h
�(e�t)je�t�1 = �; ct+2

i
� Ee�t

h
�(e�t)je�t�1 = � + 1; ct+2

i
:

Likewise
@�ut+1(� � 1; ct+1)

@ct+2
= ��Ee�t

h
�(e�t)j� � 1; ct+2iD0(ct+2):

Putting these pieces together implies

@z�t (�; ct+1)

@ct+2
=
�2




n
(1� �)�Ee�t

h
�(e�t)j�; ct+2i+ ��Ee�t

h
�(e�t)j� � 1; ct+2ioD0(ct+2): (27)

for all t 2 1; 2; : : : ; T � 1:
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Consider, next, s = 3, i.e., @z
�
t (�;ct+1)

@ct+3
.37 Using (22)

@z�t (�; ct+1)

@ct+3
=
�




�
(1� �)

@�ut+1(�; ct+1)

@ct+3
+ �

@�ut+1(� � 1; ct+1)
@ct+3

�
: (28)

To evaluate this, we need to determine the expressions for @�ut+1(�;ct+1)
@ct+3

and @�ut+1(��1;ct+1)
@ct+3

.
Applying the envelope theorem to (24)

@ut+1(�; ct+1)

@ct+3
= �

8><>:
(1� �)q�t+1

@ut+2(�+1;ct+2)
@ct+3

+
�
1� (1� �)q�t+1 � �(1� q�t+1)

� @ut+2(�;ct+2)
@ct+3

+�(1� q�t+1)
@ut+2(��1;ct+2)

@ct+3

9>=>; : (29)

where it is understood, as above, that q�t+1 = q�t+1(�; ct+2). To determine
@ut+2(�;ct+2)

@ct+3
, use (6),

we can write the expression for ut+2(�; ct+2) as

ut+2(�; ct+2) = max
qt+22[0;1]

(ct+2 � �(�))D(ct+1)� F � I(qt+2) + �ut+3(�; ct+3)

+� f(1� �)qt+2�ut+3(�; ct+3)� �(1� qt+2)�ut+3(� � 1; ct+3)g : (30)

Applying the envelope theorem to (30) and rearranging terms gives us

@ut+2(�; ct+2)

@ct+3
= �

8><>:
(1� �)q�t+2

@ut+3(�+1;ct+3)
@ct+3

+
�
1� (1� �)q�t+2 � �(1� q�t+2)

� @ut+3(�;ct+3)
@ct+3

+�(1� q�t+2)
@ut+3(��1;ct+3)

@ct+3

9>=>; ; (31)

where it is understood that q�t+2 = qt+2(�; ct+3). Now, from (6) applied to t+ 3

@ut+3(�; ct+3)

@ct+3
= (ct+3 � �(�))D0(ct+3) +D(ct+3):

Substituting this expression (and the corresponding ones for @ut+3(�+1;ct+3)
@ct+3

and @ut+3(��1;ct+3)
@ct+3

)
into (31) gives us

@ut+2(�; ct+2)

@ct+3
= �

h
(ct+3 � Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
)D0(ct+3) +D(ct+3)

i
: (32)

and therefore

@�ut+2(�; ct+2)

@ct+3
= ��Ee�t+1

h
�(e�t+1)j�; ct+3iD0(ct+3) (33)

@�ut+2(� � 1; ct+2)
@ct+3

= ��Ee�t+1
h
�(e�t+1)j� � 1; ct+3iD0(ct+3); (34)

where

�Ee�t+1
h
�(e�t+1)j�; ct+3i =

8<: Ee�t+1
h
�(e�t+1)je�t = �; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i 9=;
�Ee�t+1

h
�(e�t+1)j� � 1; ct+3i =

8<: Ee�t+1
h
�(e�t+1)je�t = � � 1; ct+3

i
�Ee�t+2

h
�(e�t+1)je�t = �; ct+3

i 9=;
37This is provided t+ 3 � T , or t � T � 3.
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Substituting (32),(33), and (34) into (29) and simplifying gives us

@ut+1(�; ct+1)

@ct+3
= �2

26666664
(ct+3 �

8>>>><>>>>:
(1� �)q�t+1Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i
+

�
1� (1� �)q�t+1
��(1� qt+1)

�
Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
+�(1� q�t+1)Ee�t+1

h
�(e�t+1)je�t = � � 1; ct+3

i
9>>>>=>>>>;)D

0(ct+3)

+D(ct+3)

37777775 ;
(35)

where again, it is understood that q�t+1 = q�t+1(�; ct+2). Now, note that8>>>><>>>>:
(1� �)q�t+1Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i
+

�
1� (1� �)q�t+1
��(1� qt+1)

�
Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
+�(1� q�t+1)Ee�t+1

h
�(e�t+1)je�t = � � 1; ct+3

i
9>>>>=>>>>; = Ee�t

h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

i

(36)
Substituting (36) into (35) gives us

@ut+1(�; ct+1)

@ct+3
= �2

"
(ct+3 �

n
Ee�t

h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

io
)D0(ct+3)

+D(ct+3)

#
;

By the general properties of conditional expectations

Ee�t
h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

i
= Ee�t+1

h
�(e�t+1)je�t�1 = �; ct+2

i
: (37)

Thus

@ut+1(�; ct+1)

@ct+3
= �2

h
(ct+3 � Ee�t+1

h
�(e�t+1)je�t�1 = �; ct+2

i
)D0(ct+3) +D(ct+3)

i
; (38)

It follows from (38)

@�ut+1(�; ct+1)

@ct+3
= �2�Ee�t+1

h
�(e�t+1)j�; ct+2iD0(ct+3) (39)

@�ut+1(� � 1; ct+1)
@ct+3

= �2�Ee�t+1
h
�(e�t+1)j� � 1; ct+2iD0(ct+3) (40)

where

�Ee�t+1
h
�(e�t+1)j�; ct+2i �

8<: Ee�t+1
h
�(e�t+1)je�t�1 = �; ct+2

i
�Ee�t+1

h
�(e�t+1)je�t�1 = � + 1; ct+2

i 9=; :

�Ee�t+1
h
�(e�t+1)j� � 1; ct+2i �

8<: Ee�t+1
h
�(e�t+1)je�t�1 = � � 1; ct+2

i
�Ee�t+1

h
�(e�t+1)je�t�1 = �; ct+2

i 9=; :

Substituting (39) and (40) into (28) gives us

@z�t (�; ct+1)

@ct+3
=
�3




n
(1� �)�Ee�t+1

h
�(e�t+1)j�; ct+2i+ ��Ee�t+1

h
�(e�t+1)j� � 1; ct+2ioD0(ct+3):

(41)
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for all t 2 1; 2; : : : ; T � 1.
Repeating the logic applied above to the cases of ct+4; : : : ; cT , yields the expression (23).

Part 2: Proof that @z�t (�;ct+1)
@ct+1

< 0: This is established in (25).

Part 3: Proof that @z�t (�;ct+1)
@ct+s

< 0; s = 2; : : : T � t:

In light of (23), it su¢ ces to show that �Ee�t+s�2
h
�(e�t+s�2)j�; ct+2i > 0 (since it would

immediately follow that �Ee�t+s�2
h
�(e�t+s�2)j� � 1; ct+2i > 0 as well). Let us �rst consider

@q�t (�;ct+1)
@ct+2

(i.e., s = 2) and note that

Ee�t
h
�(e�t)je�t�1 = �; ct+2

i
= �(�)� (1� �)q�t+1(�; ct+2)��(�) + �(1� q�t+1(�; ct+2))��(� � 1)
> �(�)� (1� �)��(�)

= ��(�) + (1� �)�(� + 1);

where the inequality follows because Ee�t
h
�(e�t)je�t�1 = �; ct+2

i
decreases in q�t+1(�; ct+2) and

thus attains its lowest value when q�t+1(�; ct+2) = 1. Also note that

Ee�t
h
�(e�t)je�t�1 = � + 1; ct+2

i
= �(� + 1)� (1� �)q�t+1(� + 1; ct+2)��(� + 1) + �(1� q�t+1(�; ct+2))��(�)

< �(� + 1) + ���(�)

= ��(�) + (1� �)�(� + 1);

where the inequality follows becauseEe�t
h
�(e�t)je�t�1 = � + 1; ct+2

i
decreases in q�t+1(�+1; ct+2)

and thus attains its highest value when q�t+1(�+1; ct+2) = 0. These chains of inequalities im-

ply �Ee�t+s�2
h
�(e�t+s�2)j�; ct+2i = Ee�t

h
�(e�t)je�t�1 = �; ct+2

i
�Ee�t

h
�(e�t)je�t�1 = � + 1; ct+2

i
>

0.
Next consider @z�t (�;ct+1)

@ct+3
(i.e., s = 3). To show @z�t (�;ct+1)

@ct+3
< 0, it su¢ ces to show

�Ee�t+1
h
�(e�t+1)j�; ct+2i = Ee�t+1

h
�(e�t+1)je�t�1 = �; ct+2

i
� Ee�t+1

h
�(e�t+1)je�t�1 = �; ct+2

i
> 0.
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Note that by the properties of conditional expectations,

Ee�t+1
h
�(e�t+1)je�t�1 = �; ct+2

i
= Ee�t

h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

i
= Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i

+

8>>>>>>>>>><>>>>>>>>>>:

�(1� �)q�t+1(�; ct+2)

�

8<: Ee�t+1
h
�(e�t+1)je�t = �; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i 9=;
+�(1� q�t+1(�; ct+2))

�

8<: Ee�t+1
h
�(e�t+1)je�t = � � 1; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i 9=;

9>>>>>>>>>>=>>>>>>>>>>;
> Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
(42)

�(1� �)

8<: Ee�t+1
h
�(e�t+1)je�t = �; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i 9=;
= �Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
(43)

+(1� �)Ee�t+1
h
�(e�t+1)je�t = � + 1; ct+3

i
;

where the inequality sign in (42) arises for the following reason; (i)Ee�t
h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

i
decreases in q�t+1(�; ct+2). This is a consequence of having established, just above, that

Ee�t
h
�(e�t)je�t�1 = �; ct+2

i
�Ee�t

h
�(e�t)je�t�1 = � + 1; ct+2

i
> 0 andEe�t

h
�(e�t)je�t�1 = � � 1; ct+2

i
�

Ee�t
h
�(e�t)je�t�1 = �; ct+2

i
> 0 (and thus, replacing t+ 1 with t, Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
�

Ee�t+1
h
�(e�t+1)je�t = � + 1; ct+3

i
> 0 andEe�t+1

h
�(e�t+1)je�t = � � 1; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
); (ii) consequently, Ee�t

h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = �; ct+2

i
attains its lowest value when

q�t+1(�; ct+2) = 1.
Also by the properties of conditional expectations, we can similarly derive the following
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chain of relations:

Ee�t+1
h
�(e�t+1)je�t�1 = � + 1; ct+2

i
= Ee�t

h
Ee�t+1

h
�(e�t+1)je�t; ct+3i je�t�1 = � + 1; ct+2

i
= Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i

+

8>>>>>>>>>><>>>>>>>>>>:

�(1� �)q�t+1(� + 1; ct+2)

�

8<: Ee�t+1
h
�(e�t+1)je�t = � + 1; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 2; ct+3

i 9=;
+�(1� q�t+1(� + 1; ct+2))

�

8<: Ee�t+1
h
�(e�t+1)je�t = �; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i 9=;

9>>>>>>>>>>=>>>>>>>>>>;
< Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i
+�

8<: Ee�t+1
h
�(e�t+1)je�t = �; ct+3

i
�Ee�t+1

h
�(e�t+1)je�t = � + 1; ct+3

i 9=;
= �Ee�t+1

h
�(e�t+1)je�t = �; ct+3

i
(44)

+(1� �)Ee�t+1
h
�(e�t+1)je�t = � + 1; ct+3

i
:

Comparing (43) and (44), we see that

Ee�t+1
h
�(e�t+1)je�t�1 = �; ct+2

i
> Ee�t+1

h
�(e�t+1)je�t�1 = � + 1; ct+2

i
,

which establishes @z�t (�;ct+1)
@ct+3

< 0.
We have established the result for s = 1; 2; 3. Repeated application of the logic used in

the case of s = 3 establishes that when � = 0, @z
�
t (�;ct+1)

@ct+s
< 0 for all s = 1; : : : T � t. �

Proof of Proposition 3:
We begin by establishing the following claim.

Claim 1 For any access prices c = (c1; : : : cT ), ut(�; ct) strictly increases in � for t =
1; : : : ; T , and in particular u1(�; c) is strictly increasing in �.

Proof. We will prove the result by induction. We �rst show the result holds for t = T and
t = T � 1. Then we show that if the result holds for any t = T � 2; : : : ; 2, it must then hold
for t � 1. From (8) we have @uT (�;cT )

@�
= ��0(�)D(cT ) > 0 since �0(�) < 0. Thus uT (�; cT ) is

strictly increasing in �. Now, consider t = T � 1. From (6)

uT�1(�; cT�1) = max
qT�12[0;1]

(cT�1 � �(�))D(cT�1)� F � I(qT�1) + �uT (�; cT )

+� f(1� �)qT�1�uT (�; cT )� �(1� qT�1)�uT (� � 1; cT )g
= max

qT�12[0;1]
(cT�1 � �(�))D(cT�1)� F � I(qT�1)

+�Ee�T�1
h
uT (e�T�1; cT )jcT�1; qT�1;e�T�2 = �

i
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By the envelope theorem

@uT�1(�; cT�1)

@�
= ��0(�)D(cT�1) + �

@Ee�T�1
h
uT (e�T�1; cT )jcT�1; qT�1;e�T�2 = �

i
@�

:

Now note that given that e�T�2 = � is the state in period T � 1, then e�T�1 has one of three
possible realizations: � + 1; �; and � � 1. Thus, an increase in � shifts the distribution
of e�T�1 in the sense of �rst-order stochastic dominance. Because we just established that
uT (�; cT ) is increasing in �, it follows that

@Ee�T�1 [uT (e�T�1;cT )jcT�1;qT�1;e�T�2=�]
@�

> 0, establishing
that @uT�1(�;cT�1)

@�
> 0. Thus, we have established the result holds for t = T and t = T�1. To

show it holds generally� and for u1(�; c) in particular� let�s assume that ut(�; ct) is strictly
increasing in �, and we will now show that ut�1(�; ct�1) is also strictly increasing in �. From
(6)

ut�1(�; ct) = max
qt�12[0;1]

(ct�1 � �(�))D(ct)� F � I(qt�1) + �ut(�; ct)

+� f(1� �)qt�1�ut(�; ct)� �(1� qt�1)�ut(� � 1; ct+1)g
= max

qt�12[0;1]
(ct�1 � �(�))D(ct)� F � I(qt�1) + �Ee�t�1

h
ut(e�t�1; ct)jct�1; qt�1;e�t�2 = �

i
:

By the envelope theorem

@ut�1(�; ct)

@�
= ��0(�))D(ct) + �

@Ee�t�1
h
ut(e�t�1; ct)jct�1; qt�1;e�t�2 = �

i
@�

:

Note that e�t�2 = � is the state in period t�1, then e�t�1 has one of three possible realizations:
�+ 1; �; and �� 1. Thus, an increase in � shifts the distribution of e�t�1 in the sense of �rst-
order stochastic dominance. By the induction hypothesis ut(�; ct) is strictly increasing in

�, it follows that
@Ee�t�1 [ut(e�t�1;ct)jcT�1;qT�1;e�t�2=�]

@�
> 0, establishing that @ut�1(�;ct�1)

@�
> 0. By

induction, ut(�; ct) is strictly increasing in � for t = T � 2; : : : ; 1, and in particular, u1(�; c)
is increasing in �.�
We next establish:

Claim 2 W (�) is strictly increasing in �, i.e., W (� + 1) > W (�) for all �.

Proof. From (11)

W (�) = max
c

TX
t=1

�t�1 [	(ct)� 
] + (1 + �)u1(�; c) + �TEe�T
h
W (e�T )j�; c2i : (45)

For any c2 and �, the investments fqt(�; c2)gTt=1 (coupled with the depreciation rate �) gives
rise to a Markov process M(�; c2) that begins in state � and generates random variablese�1; : : : ;e�T . Let c�(�) = (c�1(�); : : : ; c

�
T (�)) and c

�(� + 1) = (c�1(� + 1); : : : ; c
�
T (� + 1)) solve

the optimization problem in (45) for a given � and corresponding � + 1. Because c�(�) is
a feasible but not necessarily optimal solution to the regulator�s problem when the initial
state is � + 1 then necessarily

W (� + 1) �
TX
t=1

�t�1 [	(ct)� 
] + (1 + �)u1(� + 1; c�(�)) + �TEe�T
h
W (e�T )j� + 1; c�2(�)i :
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Subtracting W (�) from each side of the inequality above and using the expression for W (�)
and simplifying implies

W (� + 1)�W (�) � (1 + �)
�
u1(� + 1; c

�(�))
�u1(�; c�(�))

�
+ �T

24 Ee�T
h
W (e�T )j� + 1; c�2(�)i

�Ee�T
h
W (e�T )j�; c�2(�)i

35 :
As we have just shown in the previous claim, u1(� + 1; c�(�))� u1(�; c

�(�)) > 0. Thus

W (� + 1)�W (�) > �T

24 Ee�T
h
W (e�T )j� + 1; c�2(�)i

�Ee�T
h
W (e�T )j�; c�2(�)i

35 :
For a given sequence of transition probabilities, the stochastic process governing e�T given
that we start at � + 1 is the same as the stochastic process governing e�T + 1 given that we
start at �. Thus

Ee�T
h
W (e�T )j� + 1; c�2(�)i� Ee�T

h
W (e�T )j�; c�2(�)i = Ee�T

h
W (e�T + 1)�W (e�T )j�; c�2(�)i :

Thus, the inequality above can be written as

W (� + 1)�W (�) > �TEe�T
h
W (e�T + 1)�W (e�T )j�; c�2(�)i (46)

Now, this inequality holds for all � and in particular it holds for all realizations of e�T that
could arise conditional on starting at �. This implies

Ee�T
h
W (e�T + 1)�W (e�T )j�; c�2(�)i > �T

h
Ee�T

h
W (e�T + 1)j�; c�2(�)i� Ee�T

h
W (e�T )j�; c�2(�)ii

Since �T 2 (0; 1), this necessarily implies that Ee�T
h
W (e�T + 1)�W (e�T )j�; c�2(�)i > 0. This

is because the inequality could clearly not hold if Ee�T
h
W (e�T + 1)�W (e�T )j�; c�2(�)i = 0, and

ifEe�T
h
W (e�T + 1)�W (e�T )j�; c�2(�)i < 0, then dividing each side byEe�T hW (e�T + 1)�W (e�T )jj�; c�2(�)i

implies 1 < �T , which cannot hold. Thus (46 implies W (� + 1)�W (�) > 0.�
To complete the proof, recall that Proposition 2 established that investment q�t (�; ct+1)

in each period t of the regulatory cycle (except the �nal period T when investment is zero)
decreases in the access prices ct+1 = (ct+1; : : : ; cT ) in the subsequent periods. Thus an
increase in ct decreases q�1(�; c2); q�2(�; c3); : : : ; q�T�1(�; ct) for any realization of the sequence of
random variables fe�tgT�1t=1 . A decrease in ct thus increases the likelihood that productivity
increases between any two periods prior to period T . A decrease in ct thus causes an upward
shift the distribution of the random variable e�T (conditional on initial productivity e�0 = �)
in the sense of �rst-order stochastic dominance. Because W (�) increases in its argument, it
follows that

@Ee�T [W (e�T )j�;c2]
@ct

< 0, t = 2; : : : ; T . �
Proof of Proposition 4: Let q(�) = fqt(e�t�1)j�gTt=1 denote the Markov process over
investment levels when the realization of initial productivity e�0 is �. In other words, q(�)
is a vector of time-contingent, state-contingent, investment levels. A particular such vector
is the set of investment levels chosen by the �rm when the access prices are c: q�(�; c) �
fq�t (e�t�1; ct+1)gT�1t=1 , and thus the �rm�s problem in a regulatory cycle can be written as a
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choice of q(�). By (6) and the Principle of Optimality, q�(�; c) maximizes u1(�;q(�)), and
thus if we have interior investments

@u1(�;q(�))

qt(e�t�1)
�����
q(�)=q�(�;c)

= 0; for all t = 1; : : : ; T � 1; all realizations of e�t�1: (47)

Now, the distribution of e�T thus depends on q(�) and we can rewrite Ee�T [W (e�T )j�; c2] as
Ee�T [W (e�T )jq(�)]jq(�)=q�(�;c)

Fix a particular t, and write
@Ee�T [W (e�T )j�;c2]

@ct
as follows:

@Ee�T [W (e�T )j�; c2]
@ct

=

2666666664

�
@Ee�T [W (e�T )jq(�)]

@q1
jq(�)=q�(�;c)

�
@q�1(�;c2)
@ct

+
Pe�1

�
@Ee�T [W (e�T )jq(�)]

@q2(e�1) jq(�)=q�(�;c)
�

@q�2(
e�1;c3)
@ct

+ : : :

+
Pe�t�2

�
@Ee�T [W (e�T )jq(�)]

@qt�1(e�t�2) jq(�)=q�(�;c)
�

@q�t�1(
e�t�2;ct)
@ct

3777777775
; (48)

where the summations indicate summations over states. For example, assuming � 2 (�; �),e�1 takes on possible values, maxf��1; �g; �;minf�+1; �g, and the second line in (48) would
be 26666664

�
@Ee�T [W (e�T )jq(�)]
@q2(maxf��1;�g) jq(�)=q�(�;c)

�
@q�2(maxf��1;�g;c3)

@ct

+

�
@Ee�T [W (e�T )jq(�)]

@q2(�)
jq(�)=q�(�;c)

�
@q�2(�;c3)
@ct

+

�
@Ee�T [W (e�T )jq(�)]
@q2(minf�+1;�g)

jq(�)=q�(�;c)
�

@q�2(minf�+1;�g;c3)
@ct

37777775
Given Propositions 2 and 3, at least one of the terms in curly brackets in (48) must be

positive, indicating that for at least one period s 2 f1; : : : ; tg,
@Ee�T [W (e�T )jq(�)]

@qs(e�s�1) jq(�)=q�(�;c) > 0.
Now, let us use the formulation in which the regulator�s discounted welfare and the �rm�s
discounted pro�ts depend on the vector q(�) of state-contingent investments. We can write
the regulator�s discounted expected welfare as

W (�;q(�)) =

TX
t=1

�t�1 [	(ct)� 
] + u1(�;q(�)) + �Ee�T [W (e�T )jq(�)]:;
The derivative of the regulator�s welfare with respect to an investment in a particular time
s < T and state e�s�1 is

@W (�;q(�))

qs(e�s�1) =
@u1(�;q(�))

qs(e�s�1) + �
@Ee�T [W (e�T )jq(�)]

@qs(e�s�1) :

Evaluating the above derivative at q(�) = q�(�; c) and using (47) gives us

@W (�;q(�))

qs(e�s�1)
�����
q(�)=q�(�;c)

= �
@Ee�T [W (e�T )jq(�)]

@qs(e�s�1)
�����
q(�)=q�(�;c)

:
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By the result just established for any there must be some s and realizations of e�s�1 for which
@Ee�T [W (e�T )jq(�)]

@qs(e�s�1)
����
q(�)=q�(�;c)

and hence @W (�;q(�))

qs(e�s�1)
���
q(�)=q�(�;c)

> 0. Hence, in at least one period

prior to the and one state, the regulator prefers more investment than the �rm actually
makes.�

Proof of Proposition 5:
The result follows immediately from part (a) of Proposition 3 (which implies b�t(�; c2) <b�t(�; c2)), equations (5) and (12), and the property that c0(�) decreases in �.�

Proof of Proposition 6:
Since c0(�) is strictly increasing, it follows that

c�t (�) = c0(b�t(�; c2))
< c0(b�t(�; c2)
< c0(�(�))

= c�1(�)

where (a) the �rst equality follows directly from (5) and (12); (b) the �rst inequality follows
because, as established in Proposition 3, b�t(�; c2) < b�t(�; c2); (c) the second inequality follows
because when because when � = 0, the expectations of marginal cost must decline, i.e., sob�t(�; c2) < �(�).�
Proof of Proposition 7:
If T = 1, Proposition 1 implies that the �rm does not invest. With no depreciation,

productivity never changes, and since c�1(�) = c0(�(�)), we have W 1(�) = !0(�(�))
1�� . Using

(15), we have

W T (�)�W 1(�) = max
c1;:::;cT

1

1� �T

8>><>>:
PT

t=1 �
t�1 f!(ct;b�t(�; c2))� !0(�(�))g

�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(qt(e�t�1; ct+1))j�; c2i

+�T
h
Ee�T

h
W T (e�T )j�; c2i�W T (�)

i
9>>=>>; :

(49)
To proceed, we establish the following result:

Claim 3 Consider two multivariate functions f(x) and g(x) such that g(x) � 0 for all x.
Then

max
x
[f(x) + g(x)] � max

x
f(x):

Proof. Let
H(') = max

x
[f(x) + 'g(x)]

where ' 2 [0; 1], and let x�(') be the optimal solution. By the envelope theorem H 0(') =
g(x�(')). Since g(�) � 0 we have H 0(') � 0, and thus

H(1) = max
x
[f(x) + g(x)] � max

x
f(x) = H(0):
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Applying this result to (49), we have

W T (�)�W 1(�) = max
c1;:::;cT

1

1� �T

8>><>>:
PT

t=1 �
t�1 f!(ct;b�t(�; c2))� !0(�(�))g

�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(qt(e�t�1; ct+1))j�; c2i

+�T
h
Ee�T

h
W T (e�T )j�; c2i�W T (�)

i
9>>=>>;

� max
c1;:::;cT

1

1� �T

( PT
t=1 �

t�1 f!(ct;b�t(�; c2))� !0(�(�))g
�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(qt(e�t�1; ct+1))j�; c2i

)
:(50)

The inequality follows from the claim just proven and Ee�T
h
W T (e�T )j�; c2i � W T (�) � 0.

This latter inequality holds because: (i) as established shown in the proof of Lemma 3,
the regulator�s value function is strictly increasing in �, and (ii) by assumption there is no
depreciation, so any realization of e�T conditional on the initial state being �, must be at
least as large as �:
Now an implication of (6) is that for any state � at the start of a regulatory cycle, the �rm

can be thought of as choosing a set of state-contingent investments q(�) = fq1(�); q2(�); q2(�+
1); : : : ; qT�1(�); qT�1(�+1); : : : ; qT�1(�+T �2)g that maximize the discounted present value
of its expected pro�t for any schedule c2 of access prices it faces. (Recall that in the terminal
period T , there is no investment and also recall that the price c1 in the �rst period of the cycle
does not a¤ect investment decisions.) Any such choice induces a probability distribution over
the the sequence of random variables fe�0;e�1; : : :e�T�1g conditional on e�0 = �, and thus deter-

mine the expectations of marginal cost
n
Ee�t�1

h
�(e�t�1)j�;q(�)ioT

t=1
. When q(�) equals �rm�s

optimal investment strategies fqt(e�t�1; ct+1)g, the expectations of marginal cost are the ob-
jects fb�t(�; c2)gTt=1. Now, becausePT

t=1 �
t�1
n
!(ct;b�t(�; c2))� (1 + �)Ee�t�1 hI(qt(e�t�1; ct+1))j�; c2io

is discounted downstream surplus (which does not depend on investment) plus (1+�) times
discounted expected pro�t evaluated at the �rm�s optimal investment strategies fqt(e�t�1; ct+1)g,
it follows that the �rm�s optimal investments fqt(e�t�1; ct+1)g in (50) are the maximizers of
the objective function in ((50). We can thus rewrite (50) as

W T (�)�W 1(�) � max
c1;:::;cT;q(�)

1

1� �T

8<:
PT

t=1 �
t�1
n
!(ct; Ee�t�1

h
�(e�t�1)j�;q(�)i)� !0(�(�))

o
�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(qt(e�t�1))j�;q(�)i

9=; :

(51)
A feasible but not optimal solution to the optimization problem in (51) is ct = c0(�(�)),
t = 1; :::; T and q(�) = fq1(�); q2(�); q2(�+1); : : : ; qT�1(�); qT�1(�+1); : : : ; qT�1(�+T�2)g =
f0; : : : ; 0g, i.e., set all prices to the �rst-best level given the initial marginal cost and set all
investments to zero. This would imply Ee�t�1

h
�(e�t�1)j�;q(�)i = �(�) for all t, and since

by de�nition, since by de�nition, !0(�(�)) = !(c0(�(�)), with this solution, the objective
function in (51) attains a value of zero. Thus,

max
c1;:::;cT;q(�)

1

1� �T

8<:
PT

t=1 �
t�1
n
!(ct; Ee�t�1

h
�(e�t�1)j�;q(�)i)� !0(�(�))

o
�
PT

t=1 �
t�1(1 + �)Ee�t�1

h
I(qt(e�t�1))j�;q(�)i

9=; > 0;

so W T (�)�W 1(�) > 0.�
Proof of Proposition 8:
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When �!1, investment becomes arbitrarily small for any access prices and realizations
of productivity, i.e., qt(e�t�1; ct+1)! 0 for any regulatory lag. In addition, for any productiv-
ity realization, q0(e�t�1) ! 0. This implies that a continuous regulatory review, T = 1, im-
plements the �rst-best solution, i.e., W 1(�) =W 0(�).38 Thus, W 1(�)�W T (�) = DWLT (�).
Moreover, from (16) and (18)

DWLT (�) = SET (�) + �TEe�T
h
DWL(e�T )je�0 = �;q0(�) = 0

i
: (52)

Even though investment is zero, because � > 0, the productivity process
ne�t�1oT

t=1
is still

stochastic (with productivity destined to decrease over time). Thus, there is a positive
probability in periods t = 2; : : : ; T that there are some realizations of e�t�1 for which �(e�t�1) 6=b�t(�) = Ee�t�1

h
�(e�t�1))je�0 = �;q�(�) = 0

i
.39 For such realizations,

!0(�(e�t�1))jq0(�) = 0) = max
c
!(c; �(e�t�1)) > !(c0(b�t(�)); �(e�t�1)):

Since c�t (�) = c0(b�t(�)), it follows that for periods t = 2; : : : ; T ,
Ee�t�1

h
!0(�(e�t�1))je�0 = �;q0(�) = 0

i
> Ee�t�1

h
!(c�t (b�t(�)); �(e�t�1))jje�0 = �;q�(�) = 0

i
= !(c�t (b�t(�));b�t(�));

which from (17) implies SET (�) > 0. To complete the proof we need to show that this implies
DWLT (�) > 0. This follows from an induction argument. Speci�cally, for � = �, there is
zero probability that productivity decreases, and DWLT (�) = SET (�) + �TDWL(�);so
DWLT (�) = SET (�)

1��T > 0. Similarly,

DWLT (� + 1) = SET (� + 1) + �T [(1� �)DWL(� + 1) + �DWL(�)] ;

or

DWLT (� + 1) =
SET (� + 1)

1� (1� �)�T
+

�DWL(�)

1� (1� �)�T
> 0.

This establishes that DWLT (�) and DWLT (�+1) are positive. The induction hypothesis is
that DWLT (�� 1); : : : ; DWLT (�) are positive. This then implies that DWLT (�) is positive
because

DWLT (�) = SET (�) + �T (1� �)DWLT (�) +

���X
i=1

aiDWLT (� � i);

where ai are probabilities that are between zero and one. It follows that W 1(�)�W T (�) =
DWLT (�) > 0.�

38Hereafter in the proof, any statements of equality refer to equality in the limit as �!1.
39Because investment is zero in the limit, the object b�t(�; c�2(�))� the expectation of marginal cost in

period t conditional on the productivity at the beginning of the regulatory cycle being �� no longer depends
on the access prices, so we write it without the c�2(�) argument.
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paramter grid G, holding a single parameter �xed at a particular value.
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Figure 4: The regulator�s welfare W T (�) for T = 1; : : : ; 10:
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Figure 6: Each panel shows W T (�)� the regulator�s value function with a cycle length T�
and W T;bT (�)� the regulator�s value function when for a one-shot deviation to a cycle lengthbT , followed by a return to cycle length T in the future.
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